IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v457y2016icp166-175.html
   My bibliography  Save this article

A new Pareto-type distribution with applications in reliability and income data

Author

Listed:
  • Bourguignon, Marcelo
  • Saulo, Helton
  • Fernandez, Rodrigo Nobre

Abstract

A new Pareto-type distribution is introduced and studied. This new model is a generalization of the well-known Pareto distribution. We derive some of its probabilistic and inferential properties. We deduce the mathematical form of the Lorenz curve and the Gini index associated with the new model. The maximum likelihood estimators are derived and their performance are evaluated through a Monte Carlo simulation study. Finally, we illustrate the flexibility of the new distribution by means of three applications to real data sets.

Suggested Citation

  • Bourguignon, Marcelo & Saulo, Helton & Fernandez, Rodrigo Nobre, 2016. "A new Pareto-type distribution with applications in reliability and income data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 166-175.
  • Handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:166-175
    DOI: 10.1016/j.physa.2016.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300413
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Willis & Juergen Mimkes, 2004. "Evidence for the Independence of Waged and Unwaged Income, Evidence for Boltzmann Distributions in Waged Income, and the Outlines of a Coherent Theory of Income Distribution," Microeconomics 0408001, University Library of Munich, Germany.
    2. Clementi, F. & Di Matteo, T. & Gallegati, M. & Kaniadakis, G., 2008. "The κ-generalized distribution: A new descriptive model for the size distribution of incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3201-3208.
    3. F. Clementi & M. Gallegati & G. Kaniadakis, 2009. "A k-generalized statistical mechanics approach to income analysis," Papers 0902.0075, arXiv.org, revised Feb 2009.
    4. N. J. Moura & M. B. Ribeiro, 2009. "Evidence for the Gompertz curve in the income distribution of Brazil 1978–2005," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(1), pages 101-120, January.
    5. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    6. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    7. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    8. F. Clementi & M. Gallegati & G. Kaniadakis, 2007. "κ-generalized statistics in personal income distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 187-193, May.
    9. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    10. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siudem, Grzegorz & Nowak, Przemysław & Gagolewski, Marek, 2022. "Power laws, the Price model, and the Pareto type-2 distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Essam A. Ahmed & Tariq S. Alshammari & Mohamed S. Eliwa, 2024. "Different Statistical Inference Algorithms for the New Pareto Distribution Based on Type-II Progressively Censored Competing Risk Data with Applications," Mathematics, MDPI, vol. 12(13), pages 1-32, July.
    3. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    4. Saadati Nik, A. & Asgharzadeh, A. & Raqab, Mohammad Z., 2021. "Estimation and prediction for a new Pareto-type distribution under progressive type-II censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 508-530.
    5. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    2. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    3. Elvis Oltean, 2016. "Modelling income, wealth, and expenditure data by use of Econophysics," Papers 1603.08383, arXiv.org.
    4. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    5. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.
    6. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    8. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    9. F. Clementi & M. Gallegati & G. Kaniadakis, 2012. "A generalized statistical model for the size distribution of wealth," Papers 1209.4787, arXiv.org, revised Dec 2012.
    10. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    11. Masato Okamoto, 2012. "Evaluation of the goodness of fit of new statistical size distributions with consideration of accurate income inequality estimation," Economics Bulletin, AccessEcon, vol. 32(4), pages 2969-2982.
    12. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    13. Hernández-Pérez, R., 2010. "An analogy of the size distribution of business firms with Bose–Einstein statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3837-3843.
    14. José María Sarabia & Vanesa Jordá & Lorena Remuzgo, 2017. "The Theil Indices in Parametric Families of Income Distributions—A Short Review," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 867-880, December.
    15. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.
    16. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    17. Kerim Eser Afc{s}ar & Mehmet Ozyi~git & Yusuf Yuksel & Umit Ak{i}nc{i}, 2021. "Testing the Goodwin Growth Cycles with Econophysics Approach in 2002-2019 Period in Turkey," Papers 2106.02546, arXiv.org.
    18. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    19. Moura, N.J. & Ribeiro, Marcelo B., 2013. "Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2088-2103.
    20. Maria Letizia Bertotti & Giovanni Modanese, 2015. "Economic inequality and mobility in kinetic models for social sciences," Papers 1504.03232, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:166-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.