IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v454y2016icp11-23.html
   My bibliography  Save this article

Gold price analysis based on ensemble empirical model decomposition and independent component analysis

Author

Listed:
  • Xian, Lu
  • He, Kaijian
  • Lai, Kin Keung

Abstract

In recent years, the increasing level of volatility of the gold price has received the increasing level of attention from the academia and industry alike. Due to the complexity and significant fluctuations observed in the gold market, however, most of current approaches have failed to produce robust and consistent modeling and forecasting results. Ensemble Empirical Model Decomposition (EEMD) and Independent Component Analysis (ICA) are novel data analysis methods that can deal with nonlinear and non-stationary time series. This study introduces a new methodology which combines the two methods and applies it to gold price analysis. This includes three steps: firstly, the original gold price series is decomposed into several Intrinsic Mode Functions (IMFs) by EEMD. Secondly, IMFs are further processed with unimportant ones re-grouped. Then a new set of data called Virtual Intrinsic Mode Functions (VIMFs) is reconstructed. Finally, ICA is used to decompose VIMFs into statistically Independent Components (ICs). The decomposition results reveal that the gold price series can be represented by the linear combination of ICs. Furthermore, the economic meanings of ICs are analyzed and discussed in detail, according to the change trend and ICs’ transformation coefficients. The analyses not only explain the inner driving factors and their impacts but also conduct in-depth analysis on how these factors affect gold price. At the same time, regression analysis has been conducted to verify our analysis. Results from the empirical studies in the gold markets show that the EEMD–ICA serve as an effective technique for gold price analysis from a new perspective.

Suggested Citation

  • Xian, Lu & He, Kaijian & Lai, Kin Keung, 2016. "Gold price analysis based on ensemble empirical model decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 11-23.
  • Handle: RePEc:eee:phsmap:v:454:y:2016:i:c:p:11-23
    DOI: 10.1016/j.physa.2016.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116002211
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith Sill, 1996. "The cyclical volatility of interest rates," Business Review, Federal Reserve Bank of Philadelphia, issue Jan, pages 15-29.
    2. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    3. Cendejas, José Luis & Castañeda, Juan E. & Muñoz, Félix-Fernando, 2014. "Business cycle, interest rate and money in the euro area: A common factor model," Economic Modelling, Elsevier, vol. 43(C), pages 136-141.
    4. Phillip Cagan, 1971. "Changes in the Cyclical Behavior of Interest Rates," NBER Chapters, in: Essays on Interest Rates, Volume 2, pages 3-34, National Bureau of Economic Research, Inc.
    5. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    6. Uribe, Martin & Yue, Vivian Z., 2006. "Country spreads and emerging countries: Who drives whom?," Journal of International Economics, Elsevier, vol. 69(1), pages 6-36, June.
    7. Neumeyer, Pablo A. & Perri, Fabrizio, 2005. "Business cycles in emerging economies: the role of interest rates," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 345-380, March.
    8. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    9. Solt, Michael E & Swanson, Paul J, 1981. "On the Efficiency of the Markets for Gold and Silver," The Journal of Business, University of Chicago Press, vol. 54(3), pages 453-478, July.
    10. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.
    11. Capie, Forrest & Mills, Terence C. & Wood, Geoffrey, 2005. "Gold as a hedge against the dollar," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(4), pages 343-352, October.
    12. Jonathan Andrew Batten & Brian M. Lucey, 2010. "Volatility in the gold futures market," Applied Economics Letters, Taylor & Francis Journals, vol. 17(2), pages 187-190, January.
    13. Sjaastad, Larry A., 2008. "The price of gold and the exchange rates: Once again," Resources Policy, Elsevier, vol. 33(2), pages 118-124, June.
    14. Mills, Terence C., 2004. "Statistical analysis of daily gold price data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 559-566.
    15. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    16. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    17. Tschoegl, Adrian E., 1980. "Efficiency in the gold market -- a note," Journal of Banking & Finance, Elsevier, vol. 4(4), pages 371-379, December.
    18. Cheung, Yin-Wong & Lai, Kon S, 1993. "Do Gold Market Returns Have Long Memory?," The Financial Review, Eastern Finance Association, vol. 28(2), pages 181-202, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jie & Zhao, Xiaojun & Xu, Chao, 2021. "Crude oil market autocorrelation: Evidence from multiscale quantile regression analysis," Energy Economics, Elsevier, vol. 98(C).
    2. Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    4. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    5. Wang, Haoyu & Di, Junpeng & Yang, Zhaojun & Han, Qing, 2020. "Assessment of mutual fund performance based on Ensemble Empirical Mode Decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Lin, Min & Wang, Gang-Jin & Xie, Chi & Stanley, H. Eugene, 2018. "Cross-correlations and influence in world gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 504-512.
    7. Zainudin, Ahmad Danial & Mohamad, Azhar, 2021. "Financial contagion in the futures markets amidst global geo-economic events," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 288-308.
    8. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    9. Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
    11. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    12. Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
    13. Depren, Özer & Kartal, Mustafa Tevfik & Kılıç Depren, Serpil, 2021. "Changes of gold prices in COVID-19 pandemic: Daily evidence from Turkey's monetary policy measures with selected determinants," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    14. Niu, Hongli & Xu, Kunliang & Liu, Cheng, 2021. "A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction," Energy, Elsevier, vol. 231(C).
    15. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    16. Zhong, Wanxing & Kong, Rui & Chen, Guang, 2019. "Gold prices fluctuation of co-movement forecast between China and Russia," Resources Policy, Elsevier, vol. 62(C), pages 218-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ntim, Collins G. & English, John & Nwachukwu, Jacinta & Wang, Yan, 2015. "On the efficiency of the global gold markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 218-236.
    2. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    3. Fenghua Wen & Xin Yang & Xu Gong & Kin Keung Lai, 2017. "Multi-Scale Volatility Feature Analysis and Prediction of Gold Price," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 205-223, January.
    4. Amélie Charles & Olivier Darné & Jae H. Kim, 2014. "Precious metals shine? A market efficiency perspective," Working Papers hal-01010516, HAL.
    5. Białkowski, Jędrzej & Bohl, Martin T. & Stephan, Patrick M. & Wisniewski, Tomasz P., 2015. "The gold price in times of crisis," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 329-339.
    6. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    7. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    8. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2015. "Will precious metals shine? A market efficiency perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 284-291.
    9. Charteris, Ailie & Kallinterakis, Vasileios, 2021. "Feedback trading in retail-dominated assets: Evidence from the gold bullion coin market," International Review of Financial Analysis, Elsevier, vol. 75(C).
    10. Kanjilal, Kakali & Ghosh, Sajal, 2017. "Dynamics of crude oil and gold price post 2008 global financial crisis – New evidence from threshold vector error-correction model," Resources Policy, Elsevier, vol. 52(C), pages 358-365.
    11. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "Fluctuations of the real exchange rate, real interest rates, and the dynamics of the price of gold in a small open economy," Empirical Economics, Springer, vol. 51(4), pages 1481-1499, December.
    12. Beckmann, Joscha & Czudaj, Robert, 2013. "Gold as an inflation hedge in a time-varying coefficient framework," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
    13. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    14. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. Mark, Joy, 2011. "Gold and the US dollar: Hedge or haven?," Finance Research Letters, Elsevier, vol. 8(3), pages 120-131, September.
    16. Narayan, Paresh Kumar & Narayan, Seema & Zheng, Xinwei, 2010. "Gold and oil futures markets: Are markets efficient?," Applied Energy, Elsevier, vol. 87(10), pages 3299-3303, October.
    17. Gomis-Porqueras, Pedro & Shi, Shuping & Tan, David, 2022. "Gold as a financial instrument," Journal of Commodity Markets, Elsevier, vol. 27(C).
    18. Thi Hong Van Hoang & Amine Lahiani & David Heller, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Post-Print hal-02012307, HAL.
    19. Hoang, Thi Hong Van & Lahiani, Amine & Heller, David, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Economic Modelling, Elsevier, vol. 54(C), pages 54-66.
    20. Corbet, Shaen & Dowling, Michael & Gao, Xiangyun & Huang, Shupei & Lucey, Brian & Vigne, Samuel A., 2019. "An analysis of the intellectual structure of research on the financial economics of precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:454:y:2016:i:c:p:11-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.