IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp578-591.html
   My bibliography  Save this article

Optimization strategy for and structural properties of traffic efficiency under bounded information accessibility

Author

Listed:
  • Sanghyun, Ahn
  • Seungwoong, Ha
  • Kim, Soo Yong

Abstract

A vital challenge for many socioeconomic systems is determining the optimum use of limited information. Traffic systems, wherein the range of resources is limited, are a particularly good example of this challenge. Based on bounded information accessibility in terms of, for example, high costs or technical limitations, we develop a new optimization strategy to improve the efficiency of a traffic system with signals and intersections. Numerous studies, including the study by Chowdery and Schadschneider (whose method we denote by ChSch), have attempted to achieve the maximum vehicle speed or the minimum wait time for a given traffic condition. In this paper, we introduce a modified version of ChSch with an independently functioning, decentralized control system. With the new model, we determine the optimization strategy under bounded information accessibility, which proves the existence of an optimal point for phase transitions in the system. The paper also provides insight that can be applied by traffic engineers to create more efficient traffic systems by analyzing the area and symmetry of local sites. We support our results with a statistical analysis using empirical traffic data from Seoul, Korea.

Suggested Citation

  • Sanghyun, Ahn & Seungwoong, Ha & Kim, Soo Yong, 2016. "Optimization strategy for and structural properties of traffic efficiency under bounded information accessibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 578-591.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:578-591
    DOI: 10.1016/j.physa.2015.12.165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001035
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi-Lang & Wang, Bing-Hong & Liu, Mu-Ren, 2011. "An improved cellular automaton traffic model considering gap-dependent delay probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1356-1362.
    2. Gu, G.Q. & Chung, K.H. & Hui, P.M., 1995. "Two-dimensional traffic flow problems in inhomogeneous lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(3), pages 339-347.
    3. Nagatani, Takashi, 2006. "Control of vehicular traffic through a sequence of traffic lights positioned with disordered interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 560-566.
    4. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    5. Lämmer, Stefan & Kori, Hiroshi & Peters, Karsten & Helbing, Dirk, 2006. "Decentralised control of material or traffic flows in networks using phase-synchronisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 39-47.
    6. Li, Qi-Lang & Jiang, Rui & Wang, Bing-Hong, 2015. "Emergence of bistable states and phase diagrams of traffic flow at an unsignalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 349-355.
    7. Li, Qi-Lang & Wang, Bing-Hong & Liu, Mu-Ren, 2010. "Phase diagrams properties of the mixed traffic flow on a crossroad," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 5045-5052.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jinchao & Chen, Bokui & Zhang, Kai & Zhou, Jun & Miao, Lixin, 2018. "Ant pheromone route guidance strategy in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 591-603.
    2. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    3. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    5. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    6. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    8. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    9. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    10. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    11. Li, Zexu & Fang, Lei, 2024. "On the ideal gas law for crowds with high pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    12. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    13. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    14. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    15. Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    17. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    18. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    19. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    20. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:578-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.