IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp171-179.html
   My bibliography  Save this article

An analysis of multifractal characteristics of API time series in Nanjing, China

Author

Listed:
  • Shen, Chen-hua
  • Huang, Yi
  • Yan, Ya-ni

Abstract

This paper describes multifractal characteristics of daily air pollution index (API) records in Nanjing from 2001 to 2012. The entire daily API time series is first divided into 12 parts that serve as research objects, and the generalized Hurst exponent is calculated for each series. And then, the multifractal sources are analyzed and singularity spectra are shown. Next, based on a singularity spectrum, the multifractal-characteristics parameters (maximum exponent α0, spectrum width Δα, and asymmetry Δαas) are introduced. The results show that the fractality of daily API for each year is multifractal. The multifractal sources originate from both a broad probability density function and different long-range correlations with small and large fluctuations. The strength of the distribution multifractality is stronger than that of the correlation multifractality. The variation in the structure of API time series with increasing years is mainly related to long-range correlations. The structure of API time series in some years is richer. These findings can provide a scientific basis for further probing into the complexity of API.

Suggested Citation

  • Shen, Chen-hua & Huang, Yi & Yan, Ya-ni, 2016. "An analysis of multifractal characteristics of API time series in Nanjing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 171-179.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:171-179
    DOI: 10.1016/j.physa.2016.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001084
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    2. Zebende, G.F. & Filho, A. Machado, 2009. "Cross-correlation between time series of vehicles and passengers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4863-4866.
    3. Ludescher, Josef & Bogachev, Mikhail I. & Kantelhardt, Jan W. & Schumann, Aicko Y. & Bunde, Armin, 2011. "On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2480-2490.
    4. Ramón E. López & Vinod Thomas & Yan Wang, 2008. "The Quality of Growth," World Bank Publications - Books, The World Bank Group, number 28198.
    5. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    6. Shen, Chen-hua & Li, Chao-ling & Si, Ya-li, 2015. "A detrended cross-correlation analysis of meteorological and API data in Nanjing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 417-428.
    7. Hajian, S. & Movahed, M. Sadegh, 2010. "Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4942-4957.
    8. Chianca, C.V. & Ticona, A. & Penna, T.J.P., 2005. "Fourier-detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jian & Shao, Wei & Kim, Junseok, 2020. "Multifractal detrended cross-correlation analysis between respiratory diseases and haze in South Korea," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    3. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    4. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Yue-Hua Dai & Wei-Xing Zhou, 2017. "Temporal and spatial correlation patterns of air pollutants in Chinese cities," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-24, August.
    6. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Boying Li & Yu Hao & Chun-Ping Chang, 2018. "Does an anticorruption campaign deteriorate environmental quality? Evidence from China," Energy & Environment, , vol. 29(1), pages 67-94, February.
    8. Wang, Qizhen, 2019. "Multifractal characterization of air polluted time series in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 167-180.
    9. Shen, Chenhua, 2017. "A comparison of principal components using TPCA and nonstationary principal component analysis on daily air-pollutant concentration series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 453-464.
    10. Shen, Chenhua, 2019. "The influence of a scaling exponent on ρDCCA: A spatial cross-correlation pattern of precipitation records over eastern China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 579-590.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.
    2. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    3. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    4. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    5. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    7. Contreras-Reyes, Javier E. & Idrovo-Aguirre, Byron J., 2020. "Backcasting and forecasting time series using detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    9. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    10. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    11. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    12. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    13. Ardalankia, Jamshid & Osoolian, Mohammad & Haven, Emmanuel & Jafari, G. Reza, 2020. "Scaling features of price–volume cross correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    15. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    17. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    18. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    19. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Mali, Provash & Mukhopadhyay, Amitabha & Singh, Gurmukh, 2016. "Multifractal detrended moving average analysis of particle density functions in relativistic nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 323-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:171-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.