IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp417-428.html
   My bibliography  Save this article

A detrended cross-correlation analysis of meteorological and API data in Nanjing, China

Author

Listed:
  • Shen, Chen-hua
  • Li, Chao-ling
  • Si, Ya-li

Abstract

The cross correlation between daily meteorological data and air pollution index (API) records in Nanjing during the past 12 years is studied by means of a detrended cross-correlation analysis (DCCA). In this study, we use statistical significance tests and power-law statistical tests to verify cross correlation between meteorological data and the API. Through calculating the DCCA cross correlation coefficient ρDCCA, we intend to obtain a range of cross correlation levels between the meteorological data and the API at different time scales. Utilizing the multifractal detrended cross correlation analysis (MF-DCCA) and algorithm-multifractal cross correlation analysis (MF-CCA) proposed by Oświecimka, we observe multifractal cross-correlation behavior between meteorological factors and the API. Our results show a cross correlation between meteorological factors and the API in Nanjing. The cross-correlation between diurnal temperature ranges and the API is persistent at studied time scales, while the cross correlations of wind speed, relative humidity, and precipitation with the API are anti-persistent at studied time scales. Next, a cross correlation of temperature with the API finds persistent cross correlation at smaller time scales, and anti-persistent cross-correlation at larger time scales; the cross correlation of atmospheric pressure with the API, however, results in anti-persistent cross correlation at smaller time scales, and persistent cross correlation at larger time scales. The MF-DCCA demonstrates that all underlying fluctuations have a weak multifractal nature where one scaling exponent is obtained. However, the MF-CCA suggests that some crossovers exist in the cross-correlation fluctuation function in terms of time scales of temperature and atmospheric pressure versus the API. The MF-CCA method is more subtle and suitable for reflecting the cross correlation of the two given time series. Compared with a traditional correlation analysis, the DCCA can uncover more cross-correlation information between API and meteorological factors. Therefore, the DCCA is also recommended as a comparatively reliable method for detecting the correlations between the API and meteorological data, and can also be useful for our understanding of the cross correlation between air quality and meteorological elements.

Suggested Citation

  • Shen, Chen-hua & Li, Chao-ling & Si, Ya-li, 2015. "A detrended cross-correlation analysis of meteorological and API data in Nanjing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 417-428.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:417-428
    DOI: 10.1016/j.physa.2014.10.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008966
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    2. Pawe{l} O'swic{e}cimka & Stanis{l}aw Dro.zd.z & Marcin Forczek & Stanis{l}aw Jadach & Jaros{l}aw Kwapie'n, 2013. "Detrended Cross-Correlation Analysis Consistently Extended to Multifractality," Papers 1308.6148, arXiv.org, revised Feb 2014.
    3. Ramón E. López & Vinod Thomas & Yan Wang, 2008. "The Quality of Growth," World Bank Publications - Books, The World Bank Group, number 28198.
    4. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    5. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    8. S. Shadkhoo & G. R. Jafari, 2009. "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 679-683, December.
    9. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    10. Lee, Sun Young & Hwang, Dong Il & Kim, Min Jae & Koh, In Gyu & Kim, Soo Yong, 2011. "Cross-correlations in volume space: Differences between buy and sell volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 837-846.
    11. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 817-827.
    12. Vassoler, R.T. & Zebende, G.F., 2012. "DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2438-2443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Cun & Liang, Chuan & Zhao, Lu & Zhang, Yaling & Cheng, Long & Jiang, Shouzheng & Xing, Liwen, 2021. "Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Aslam, Faheem & Hunjra, Ahmed Imran & Memon, Bilal Ahmed & Zhang, Mingda, 2024. "Interplay of multifractal dynamics between shadow policy rates and energy markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    3. Shen, Chen-hua & Huang, Yi & Yan, Ya-ni, 2016. "An analysis of multifractal characteristics of API time series in Nanjing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 171-179.
    4. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    5. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    6. Anderson Palmeira & Éder Pereira & Paulo Ferreira & Luisa Maria Diele-Viegas & Davidson Martins Moreira, 2022. "Long-Term Correlations and Cross-Correlations in Meteorological Variables and Air Pollution in a Coastal Urban Region," Sustainability, MDPI, vol. 14(21), pages 1-12, November.
    7. Shen, Chen-hua & Li, Cao-ling, 2016. "An analysis of the intrinsic cross-correlations between API and meteorological elements using DPCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 100-109.
    8. Liu, Jin-Long & Yu, Zu-Guo & Zhou, Yu, 2024. "A cross horizontal visibility graph algorithm to explore associations between two time series," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Shen, Chenhua, 2017. "A comparison of principal components using TPCA and nonstationary principal component analysis on daily air-pollutant concentration series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 453-464.
    10. Contreras-Reyes, Javier E. & Idrovo-Aguirre, Byron J., 2020. "Backcasting and forecasting time series using detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    11. Shen, Chenhua, 2019. "The influence of a scaling exponent on ρDCCA: A spatial cross-correlation pattern of precipitation records over eastern China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 579-590.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    2. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    3. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    4. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    6. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    7. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    9. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    10. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    11. Shen, Chenhua, 2017. "A comparison of principal components using TPCA and nonstationary principal component analysis on daily air-pollutant concentration series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 453-464.
    12. Li, Wei & Lu, Xinsheng & Ren, Yongping & Zhou, Ying, 2018. "Dynamic relationship between RMB exchange rate index and stock market liquidity: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 726-739.
    13. El Alaoui, Marwane, 2017. "Price–volume multifractal analysis of the Moroccan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 473-485.
    14. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    15. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    16. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    17. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    18. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    19. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    20. Chen, Yingyuan & Cai, Lihui & Wang, Ruofan & Song, Zhenxi & Deng, Bin & Wang, Jiang & Yu, Haitao, 2018. "DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 171-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:417-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.