IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp667-679.html
   My bibliography  Save this article

Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market

Author

Listed:
  • Sun, Xuelian
  • Liu, Zixian

Abstract

In this paper, a new estimator of correlation matrix is proposed, which is composed of the detrended cross-correlation coefficients (DCCA coefficients), to improve portfolio optimization. In contrast to Pearson’s correlation coefficients (PCC), DCCA coefficients acquired by the detrended cross-correlation analysis (DCCA) method can describe the nonlinear correlation between assets, and can be decomposed in different time scales. These properties of DCCA make it possible to improve the investment effect and more valuable to investigate the scale behaviors of portfolios. The minimum variance portfolio (MVP) model and the Mean–Variance (MV) model are used to evaluate the effectiveness of this improvement. Stability analysis shows the effect of two kinds of correlation matrices on the estimation error of portfolio weights. The observed scale behaviors are significant to risk management and could be used to optimize the portfolio selection.

Suggested Citation

  • Sun, Xuelian & Liu, Zixian, 2016. "Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 667-679.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:667-679
    DOI: 10.1016/j.physa.2015.10.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009243
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. Martín-Montoya, L.A. & Aranda-Camacho, N.M. & Quimbay, C.J., 2015. "Long-range correlations and trends in Colombian seismic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 124-133.
    5. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    8. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
    9. Gvozdanovic, Igor & Podobnik, Boris & Wang, Duan & Eugene Stanley, H., 2012. "1/f behavior in cross-correlations between absolute returns in a US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2860-2866.
    10. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    11. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    12. Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
    13. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    14. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    15. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    16. Zebende, G.F. & da Silva, P.A. & Machado Filho, A., 2011. "Study of cross-correlation in a self-affine time series of taxi accidents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1677-1683.
    17. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    18. Zebende, G.F. & Filho, A. Machado, 2009. "Cross-correlation between time series of vehicles and passengers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4863-4866.
    19. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    20. Valls, Claudia, 2012. "Rational integrability of a nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 141-146.
    21. Akemann, G. & Fischmann, J. & Vivo, P., 2010. "Universal correlations and power-law tails in financial covariance matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2566-2579.
    22. Vassoler, R.T. & Zebende, G.F., 2012. "DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2438-2443.
    23. Palczewski, Andrzej & Palczewski, Jan, 2014. "Theoretical and empirical estimates of mean–variance portfolio sensitivity," European Journal of Operational Research, Elsevier, vol. 234(2), pages 402-410.
    24. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    2. Wang, Feng & Ye, Xin & Chen, HongTao & Wu, Congxin, 2021. "A portfolio strategy of stock market based on mean-MF-X-DMA model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Mohamed Arbi Madani & Zied Ftiti, 2019. "The Generalisation of the DMCA Coefficient to Serve Distinguishing Between Hedge and Safe Haven Capabilities of the Gold," Papers 1912.12590, arXiv.org.
    4. Mohamed Arbi Madani & Zied Ftiti, 2022. "Is gold a hedge or safe haven against oil and currency market movements? A revisit using multifractal approach," Annals of Operations Research, Springer, vol. 313(1), pages 367-400, June.
    5. Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin, 2019. "Portfolio strategy of International crude oil markets: A study based on multiwavelet denoising-integration MF-DCCA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    7. Chen, Yingyuan & Cai, Lihui & Wang, Ruofan & Song, Zhenxi & Deng, Bin & Wang, Jiang & Yu, Haitao, 2018. "DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 171-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    2. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    3. Oussama Tilfani & Paulo Ferreira & My Youssef El Boukfaoui, 2021. "Dynamic cross-correlation and dynamic contagion of stock markets: a sliding windows approach with the DCCA correlation coefficient," Empirical Economics, Springer, vol. 60(3), pages 1127-1156, March.
    4. Ferreira, Paulo & Loures, Luís & Nunes, José & Brito, Paulo, 2018. "Are renewable energy stocks a possibility to diversify portfolios considering an environmentally friendly approach? The view of DCCA correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 675-681.
    5. Oussama Tilfani & Paulo Ferreira & Andreia Dionisio & My Youssef El Boukfaoui, 2020. "EU Stock Markets vs. Germany, UK and US: Analysis of Dynamic Comovements Using Time-Varying DCCA Correlation Coefficients," JRFM, MDPI, vol. 13(5), pages 1-23, May.
    6. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    7. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    8. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    9. Kristoufek, Ladislav, 2018. "Fractality in market risk structure: Dow Jones Industrial components case," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 69-75.
    10. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    11. Lin, Aijing & Shang, Pengjian & Zhong, Bo, 2014. "Hidden cross-correlation patterns in stock markets based on permutation cross-sample entropy and PCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 259-272.
    12. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    13. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    14. Zhang, Chen & Ni, Zhiwei & Ni, Liping, 2015. "Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 114-123.
    15. Liu, Li & Ma, Guofeng, 2014. "Cross-correlation between crude oil and refined product prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 284-293.
    16. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    17. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    18. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    19. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    20. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:667-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.