IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp1003-1011.html
   My bibliography  Save this article

Characterization of river flow fluctuations via horizontal visibility graphs

Author

Listed:
  • Braga, A.C.
  • Alves, L.G.A.
  • Costa, L.S.
  • Ribeiro, A.A.
  • de Jesus, M.M.A.
  • Tateishi, A.A.
  • Ribeiro, H.V.

Abstract

We report on a large-scale characterization of river discharges by employing the network framework of the horizontal visibility graph. By mapping daily time series from 141 different stations of 53 Brazilian rivers into complex networks, we present a useful approach for investigating the dynamics of river flows. We verified that the degree distributions of these networks were well described by exponential functions, where the characteristic exponents are almost always larger than the value obtained for random time series. The faster-than-random decay of the degree distributions is an another evidence that the fluctuation dynamics underlying the river discharges has a long-range correlated nature. We further investigated the evolution of the river discharges by tracking the values of the characteristic exponents (of the degree distribution) and the global clustering coefficients of the networks over the years. We show that the river discharges in several stations have evolved to become more or less correlated (and displaying more or less complex internal network structures) over the years, a behavior that could be related to changes in the climate system and other man-made phenomena.

Suggested Citation

  • Braga, A.C. & Alves, L.G.A. & Costa, L.S. & Ribeiro, A.A. & de Jesus, M.M.A. & Tateishi, A.A. & Ribeiro, H.V., 2016. "Characterization of river flow fluctuations via horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1003-1011.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:1003-1011
    DOI: 10.1016/j.physa.2015.10.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009619
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele & Toth, Laszlo, 2014. "Visibility graph analysis of 2002–2011 Pannonian seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 219-224.
    2. Kantelhardt, Jan W. & Rybski, Diego & Zschiegner, Stephan A. & Braun, Peter & Koscielny-Bunde, Eva & Livina, Valerie & Havlin, Shlomo & Bunde, Armin, 2003. "Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 240-245.
    3. Yang, Yue & Wang, Jianbo & Yang, Huijie & Mang, Jingshi, 2009. "Visibility graph approach to exchange rate series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4431-4437.
    4. Yu, Zu-Guo & Leung, Yee & Chen, Yongqin David & Zhang, Qiang & Anh, Vo & Zhou, Yu, 2014. "Multifractal analyses of daily rainfall time series in Pearl River basin of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 193-202.
    5. Gao, Zhong-Ke & Jin, Ning-De, 2012. "Characterization of chaotic dynamic behavior in the gas–liquid slug flow using directed weighted complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(10), pages 3005-3016.
    6. Livina, V. & Ashkenazy, Y. & Kizner, Z. & Strygin, V. & Bunde, A. & Havlin, S., 2003. "A stochastic model of river discharge fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 283-290.
    7. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    8. Mihailović, D.T. & Nikolić-Đorić, E. & Drešković, N. & Mimić, G., 2014. "Complexity analysis of the turbulent environmental fluid flow time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 96-104.
    9. Rybski, Diego & Holsten, Anne & Kropp, Jürgen P., 2011. "Towards a unified characterization of phenological phases: Fluctuations and correlations with temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 680-688.
    10. Jánosi, Imre M & Gallas, Jason A.C, 1999. "Growth of companies and water-level fluctuations of the river Danube," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 448-457.
    11. Aleksandra Murks & Matjaž Perc, 2011. "Evolutionary Games On Visibility Graphs," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 307-315.
    12. Dahlstedt, Kajsa & Jensen, Henrik Jeldtoft, 2005. "Fluctuation spectrum and size scaling of river flow and level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 596-610.
    13. Hajian, S. & Movahed, M. Sadegh, 2010. "Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4942-4957.
    14. Sadegh Movahed, M. & Hermanis, Evalds, 2008. "Fractal analysis of river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 915-932.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.
    2. Peng, Xiaoyi & Zhao, Yi & Small, Michael, 2020. "Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G., 2016. "Time series characterization via horizontal visibility graph and Information Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 93-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    4. Mihailović, Dragutin T. & Nikolić-Đorić, Emilija & Arsenić, Ilija & Malinović-Milićević, Slavica & Singh, Vijay P. & Stošić, Tatijana & Stošić, Borko, 2019. "Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 290-303.
    5. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
    6. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    7. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Ghosh, Dipak & Chakraborty, Sayantan & Samanta, Shukla, 2019. "Study of translational effect in Tagore’s Gitanjali using Chaos based Multifractal analysis technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1343-1354.
    9. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Al Sawaf, Mohamad Basel & Kawanisi, Kiyosi & Kagami, Junya & Bahreinimotlagh, Masoud & Danial, Mochammad Meddy, 2017. "Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 11-20.
    11. Adarsh Sankaran & Sagar Rohidas Chavan & Mumtaz Ali & Archana Devarajan Sindhu & Drisya Sasi Dharan & Muhammad Ismail Khan, 2021. "Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1951-1979, April.
    12. Ausloos, Marcel & Cerqueti, Roy & Lupi, Claudio, 2017. "Long-range properties and data validity for hydrogeological time series: The case of the Paglia river," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 39-50.
    13. Mihailović, D.T. & Nikolić-Đorić, E. & Drešković, N. & Mimić, G., 2014. "Complexity analysis of the turbulent environmental fluid flow time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 96-104.
    14. Dashtian, Hassan & Jafari, G. Reza & Sahimi, Muhammad & Masihi, Mohsen, 2011. "Scaling, multifractality, and long-range correlations in well log data of large-scale porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2096-2111.
    15. Ghosh, Dipak & Dutta, Srimonti & Chakraborty, Sayantan, 2014. "Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 1-10.
    16. Kar, Alpa & Chatterjee, Sucharita & Ghosh, Dipak, 2019. "Multifractal detrended cross correlation analysis of Land-surface temperature anomalies and Soil radon concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 236-247.
    17. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.
    18. Sun, Mei & Wang, Yaqi & Gao, Cuixia, 2016. "Visibility graph network analysis of natural gas price: The case of North American market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1-11.
    19. Yu, Zu-Guo & Leung, Yee & Chen, Yongqin David & Zhang, Qiang & Anh, Vo & Zhou, Yu, 2014. "Multifractal analyses of daily rainfall time series in Pearl River basin of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 193-202.
    20. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:1003-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.