Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2015.06.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koulouriotis, D.E. & Emiris, D.M. & Diakoulakis, I.E. & Zopounidis, C., 2002. "Behavioristic Analysis And Comparative Evaluation Of Intelligent Methodologies For Short-Term Stock Price Forecasting," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 0(2), pages 23-57, November.
- Yi-Hsien Wang, 2009. "Using neural network to forecast stock index option price: a new hybrid GARCH approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 833-843, September.
- Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
- Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elfadil A. Mohamed & Ibrahim Elsiddig Ahmed & Riyadh Mehdi & Hanan Hussain, 2021. "Impact of corporate performance on stock price predictions in the UAE markets: Neuro‐fuzzy model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 52-71, January.
- Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
- Guo, Qingran & Ahmed, Khalid & Ding, Cuicui & Khan, Bareerah, 2024. "How the pandemic-led volatility in the natural resource commodity indices affect U.S and China markets," Resources Policy, Elsevier, vol. 90(C).
- Rashmi Chaudhary & Priti Bakhshi & Hemendra Gupta, 2020. "Volatility in International Stock Markets: An Empirical Study during COVID-19," JRFM, MDPI, vol. 13(9), pages 1-17, September.
- Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
- Nahida Akter & Ashadun Nobi, 2018. "Investigation of the Financial Stability of S&P 500 Using Realized Volatility and Stock Returns Distribution," JRFM, MDPI, vol. 11(2), pages 1-10, April.
- J. Gavin & M. Crane, 2021. "Community Detection in Cryptocurrencies with Potential Applications to Portfolio Diversification," Papers 2108.09763, arXiv.org.
- Mahdi Moradi & Mehdi Jabbari Nooghabi & Mohammad Mahdi Rounaghi, 2021. "Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 662-678, January.
- Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
- Sujin Pyo & Jaewook Lee & Mincheol Cha & Huisu Jang, 2017. "Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-17, November.
- U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2019. "Tehran Stock Exchange Prediction Using Sentiment Analysis of Online Textual Opinions," Papers 1909.03792, arXiv.org, revised Sep 2019.
- Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
- Jian Huang & Huazhang Liu, 2019. "Examination and Modification of Multi-Factor Model in Explaining Stock Excess Return with Hybrid Approach in Empirical Study of Chinese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-30, May.
- Samitas, Aristeidis & Kampouris, Elias & Kenourgios, Dimitris, 2020. "Machine learning as an early warning system to predict financial crisis," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
- Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rounaghi, Mohammad Mahdi & Abbaszadeh, Mohammad Reza & Arashi, Mohammad, 2015. "Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 625-633.
- Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
- Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
- Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
- Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016.
"The study of Thai stock market across the 2008 financial crisis,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
- K. Kanjamapornkul & Richard Pinv{c}'ak & Erik Bartov{s}, 2016. "The study of Thai stock market across the 2008 financial crisis," Papers 1606.02871, arXiv.org.
- Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
- Jordan French, 2016. "Back to the Future Betas: Empirical Asset Pricing of US and Southeast Asian Markets," IJFS, MDPI, vol. 4(3), pages 1-13, July.
- Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
- Chin-Sheng Huang & Yi-Sheng Liu, 2019. "Machine Learning on Stock Price Movement Forecast: The Sample of the Taiwan Stock Exchange," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 189-201.
- Dhaoui, Abderrazak & Audi, Mohamed & Ouled Ahmed Ben Ali, Raja, 2015. "Revising empirical linkages between direction of Canadian stock price index movement and Oil supply and demand shocks: Artificial neural network and support vector machines approaches," MPRA Paper 66029, University Library of Munich, Germany.
- Masaya Abe & Hideki Nakayama, 2018. "Deep Learning for Forecasting Stock Returns in the Cross-Section," Papers 1801.01777, arXiv.org, revised Jun 2018.
- Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
- ?enol Emir & Hasan Din?er & Mehpare Timor, 2012. "A Stock Selection Model Based on Fundamental and Technical Analysis Variables by Using Artificial Neural Networks and Support Vector Machines," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 106-122, August.
- Tsai, Kuo-Ting & Lih, Jiann-Shing & Ko, Jing-Yuan, 2012. "The overnight effect on the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6497-6505.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Lin, Chiun-Sin & Chiu, Sheng-Hsiung & Lin, Tzu-Yu, 2012. "Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2583-2590.
- Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
- Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
More about this item
Keywords
Artificial neural networks; Prediction stock price; Principal component analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:178-187. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.