IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i24p6497-6505.html
   My bibliography  Save this article

The overnight effect on the Taiwan stock market

Author

Listed:
  • Tsai, Kuo-Ting
  • Lih, Jiann-Shing
  • Ko, Jing-Yuan

Abstract

This study examines statistical regularities among three components of stocks and indices: daytime (trading hour) return, overnight (off-hour session) return, and total (close-to-close) return. Owing to the fact that the Taiwan Stock Exchange (TWSE) has the longest non-trading periods among major markets, the TWSE is selected to explore the correlation among the three components and compare it with major markets such as the New York Stock Exchange (NYSE) and the National Association of Securities Dealers Automated Quotation (NASDAQ). Analysis results indicate a negative cross correlation between the sign of daytime return and the sign of overnight return; possibly explaining why most stocks feature a negative cross correlation between daytime return and overnight return [F. Wang, S.-J. Shieh, S. Havlin, H.E. Stanley, Statistical analysis of the overnight and daytime return, Phys. Rev. E 79 (2009) 056109]. Additionally, the cross correlation between the magnitude of returns is analyzed. According to those results, a larger magnitude of overnight return implies a higher probability that the sign of the following daytime return is the opposite of the sign of overnight return. Namely, the predictability of daytime return might be improved when a stock undergoes a large magnitude of overnight return. Furthermore, the cross correlations of 29 indices of worldwide markets are discussed.

Suggested Citation

  • Tsai, Kuo-Ting & Lih, Jiann-Shing & Ko, Jing-Yuan, 2012. "The overnight effect on the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6497-6505.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6497-6505
    DOI: 10.1016/j.physa.2012.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112006723
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Rosita P. & Rhee, S. Ghon & Stone, Gregory R. & Tang, Ning, 2008. "How does the call market method affect price efficiency? Evidence from the Singapore Stock Market," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2205-2219, October.
    2. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    3. Jung, Woo-Sung & Kwon, Okyu & Wang, Fengzhong & Kaizoji, Taisei & Moon, Hie-Tae & Stanley, H. Eugene, 2008. "Group dynamics of the Japanese market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 537-542.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    5. Wang, Steven Shuye & Meng Rui, Oliver & Firth, Michael, 2002. "Return and volatility behavior of dually-traded stocks: the case of Hong Kong," Journal of International Money and Finance, Elsevier, vol. 21(2), pages 265-293, April.
    6. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    7. Tsutsui, Yoshiro, 2003. "Stock prices in Japan rise at night," Japan and the World Economy, Elsevier, vol. 15(4), pages 391-406, December.
    8. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    9. Barclay, Michael J. & Hendershott, Terrence, 2008. "A comparison of trading and non-trading mechanisms for price discovery," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 839-849, December.
    10. Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
    11. Fengzhong Wang & Shwu-Jane Shieh & Shlomo Havlin & H. Eugene Stanley, 2009. "Statistical analysis of the overnight and daytime return," Papers 0903.0993, arXiv.org.
    12. Ronen, Tavy, 1998. "Trading structure and overnight information: A natural experiment from the Tel-Aviv Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 22(5), pages 489-512, May.
    13. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    14. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    15. Deb, Saikat Sovan & Kalev, Petko S. & Marisetty, Vijaya B., 2010. "Are price limits really bad for equity markets?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2462-2471, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kallinterakis, Vasileios & Karaa, Rabaa, 2023. "From dusk till dawn (and vice versa): Overnight-versus-daytime reversals and feedback trading," International Review of Financial Analysis, Elsevier, vol. 85(C).
    2. Insana, Alessandra, 2022. "Does systematic risk change when markets close? An analysis using stocks’ beta," Economic Modelling, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    2. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Zheng, Zeyu & Gui, Jun & Qiao, Zhi & Fu, Yang & Stanley, H.Eugene & Li, Baowen, 2019. "New dynamics between volume and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1343-1350.
    4. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2019. "Volatility aggregation intensity energy futures series on stochastic finite-range exclusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 370-383.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Makoto Nirei, 2008. "Self-organized criticality in a herd behavior model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(1), pages 89-97, June.
    8. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    9. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    10. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    11. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    12. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    13. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    14. Sabiou Inoua, 2015. "The Intrinsic Instability of Financial Markets," Papers 1508.02203, arXiv.org.
    15. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    16. Wang, Yiduan & Zheng, Shenzhou & Zhang, Wei & Wang, Jun & Wang, Guochao, 2018. "Modeling and complexity of stochastic interacting Lévy type financial price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 498-511.
    17. Zhang, Bo & Wang, Guochao & Wang, Yiduan & Zhang, Wei & Wang, Jun, 2019. "Multiscale statistical behaviors for Ising financial dynamics with continuum percolation jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1012-1025.
    18. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    19. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    20. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6497-6505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.