IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v437y2015icp263-277.html
   My bibliography  Save this article

A method for modeling and analysis of directed weighted accident causation network (DWACN)

Author

Listed:
  • Zhou, Jin
  • Xu, Weixiang
  • Guo, Xin
  • Ding, Jing

Abstract

Using complex network theory to analyze accidents is effective to understand the causes of accidents in complex systems. In this paper, a novel method is proposed to establish directed weighted accident causation network (DWACN) for the Rail Accident Investigation Branch (RAIB) in the UK, which is based on complex network and using event chains of accidents. DWACN is composed of 109 nodes which denote causal factors and 260 directed weighted edges which represent complex interrelationships among factors. The statistical properties of directed weighted complex network are applied to reveal the critical factors, the key event chains and the important classes in DWACN. Analysis results demonstrate that DWACN has characteristics of small-world networks with short average path length and high weighted clustering coefficient, and display the properties of scale-free networks captured by that the cumulative degree distribution follows an exponential function. This modeling and analysis method can assist us to discover the latent rules of accidents and feature of faults propagation to reduce accidents. This paper is further development on the research of accident analysis methods using complex network.

Suggested Citation

  • Zhou, Jin & Xu, Weixiang & Guo, Xin & Ding, Jing, 2015. "A method for modeling and analysis of directed weighted accident causation network (DWACN)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 263-277.
  • Handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:263-277
    DOI: 10.1016/j.physa.2015.05.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005403
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.05.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lara-Cabrera, R. & Cotta, C. & Fernández-Leiva, A.J., 2014. "An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 523-536.
    2. Bono, Flavio & Gutiérrez, Eugenio & Poljansek, Karmen, 2010. "Road traffic: A case study of flow and path-dependency in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5287-5297.
    3. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    4. Barthélemy, Marc & Barrat, Alain & Pastor-Satorras, Romualdo & Vespignani, Alessandro, 2005. "Characterization and modeling of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jintao Liu & Keping Li & Wei Zheng & Jiebei Zhu, 2019. "An importance order analysis method for causes of railway signaling system hazards based on complex networks," Journal of Risk and Reliability, , vol. 233(4), pages 567-579, August.
    2. Yong Zhang & Qi Zhang & Xiang Zhang & Meng Li & Guoqing Qi, 2024. "How Do We Analyze the Accident Causation of Shield Construction of Water Conveyance Tunnels? A Method Based on the N-K Model and Complex Network," Mathematics, MDPI, vol. 12(20), pages 1-30, October.
    3. Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
    4. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Guo, Shengyu & Zhou, Xinyu & Tang, Bing & Gong, Peisong, 2020. "Exploring the behavioral risk chains of accidents using complex network theory in the construction industry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    6. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    7. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Cuiping Ren & Bianbian Chen & Fengjie Xie & Xuan Zhao & Jiaqian Zhang & Xueyan Zhou, 2022. "Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    9. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Guo, Xin & Wang, David Z.W. & Wu, Jianjun & Sun, Huijun & Zhou, Li, 2020. "Mining commuting behavior of urban rail transit network by using association rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    11. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Zhou, Jin & Xu, Weixiang & Guo, Xin & Liu, Xumin, 2017. "A hierarchical network modeling method for railway tunnels safety assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 226-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peixin Dong & Dongyuan Li & Jianping Xing & Haohui Duan & Yong Wu, 2019. "A Method of Bus Network Optimization Based on Complex Network and Beidou Vehicle Location," Future Internet, MDPI, vol. 11(4), pages 1-12, April.
    2. Jia, Tao & Jiang, Bin, 2012. "Building and analyzing the US airport network based on en-route location information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4031-4042.
    3. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    4. Lu, Mengyuan & Perez, Edgar Jimenez & Mason, Keith & He, Yin, 2024. "Fractal assessment analysis of China's air-HSR network integration," Journal of Transport Geography, Elsevier, vol. 114(C).
    5. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    6. Hu, Baoyu & Feng, Shumin & Li, Jinyang & Zhao, Hu, 2018. "Statistical analysis of passenger-crowding in bus transport network of Harbin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 426-438.
    7. Linda Margarita Medina Herrera & José Benito Díaz Hernández, 2011. "Caracterización y modelado de redes: el caso de la Bolsa Mexicana de Valores," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 23-32.
    8. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    9. Tu Anh Trinh & Ducksu Seo & Unchong Kim & Thi Nhu Quynh Phan & Thi Hai Hang Nguyen, 2022. "Air Transport Centrality as a Driver of Sustainable Regional Growth: A Case of Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    10. Zhou, Yaoming & Wang, Junwei & Huang, George Q., 2019. "Efficiency and robustness of weighted air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 14-26.
    11. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    12. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    13. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    14. Arribas Ivan & Perez Francisco & Tortosa-Ausina Emili, 2010. "The Determinants of International Financial Integration Revisited: The Role of Networks and Geographic Neutrality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-55, December.
    15. Andrea Fracasso & Nicola Grassano & Giuseppe Vittucci Marzetti, 2015. "The Gravity of Foreign News Coverage in the EU: Does the Euro Matter?," Journal of Common Market Studies, Wiley Blackwell, vol. 53(2), pages 274-291, March.
    16. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    17. Zhang, Yaping & Peng, Ting & Fu, Chuanyun & Cheng, Shaowu, 2016. "Simulation analysis of factors affecting air route connection in China," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 12-20.
    18. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    19. Xu Bai & Jinxi Wu & Yun Liu & Yihan Xu, 2020. "Research on the impact of global innovation network on 3D printing industry performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1015-1051, August.
    20. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:263-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.