IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v395y2014icp523-536.html
   My bibliography  Save this article

An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games

Author

Listed:
  • Lara-Cabrera, R.
  • Cotta, C.
  • Fernández-Leiva, A.J.

Abstract

Games constitute a research domain that is attracting the interest of scientists from numerous disciplines. This is particularly true from the perspective of computational intelligence. In order to examine the growing importance of this area in the gaming domain, we present an analysis of the scientific collaboration network of researchers working on computational intelligence in games (CIG). This network has been constructed from bibliographical data obtained from the Digital Bibliography & Library Project (DBLP). We have analyzed from a temporal perspective several properties of the CIG network at the macroscopic, mesoscopic and microscopic levels, studying the large-scale structure, the growth mechanics, and collaboration patterns among other features. Overall, computational intelligence in games exhibits similarities with other collaboration networks such as for example a log-normal degree distribution and sub-linear preferential attachment for new authors. It also has distinctive features, e.g. the number of papers co-authored is exponentially distributed, the internal preferential attachment (new collaborations among existing authors) is linear, and fidelity rates (measured as the relative preference for publishing with previous collaborators) grow super-linearly. The macroscopic and mesoscopic evolution of the network indicates the field is very active and vibrant, but it is still at an early developmental stage. We have also analyzed communities and central nodes and how these are reflected in research topics, thus identifying active research subareas.

Suggested Citation

  • Lara-Cabrera, R. & Cotta, C. & Fernández-Leiva, A.J., 2014. "An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 523-536.
  • Handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:523-536
    DOI: 10.1016/j.physa.2013.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711301008X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiyan Hou & Hildrun Kretschmer & Zeyuan Liu, 2008. "The structure of scientific collaboration networks in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 189-202, May.
    2. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    3. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    4. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    2. Zhou, Jin & Xu, Weixiang & Guo, Xin & Ding, Jing, 2015. "A method for modeling and analysis of directed weighted accident causation network (DWACN)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 263-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    2. Türker, İlker & Çavuşoğlu, Abdullah, 2016. "Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 386-392.
    3. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    4. Miloš Savić & Mirjana Ivanović & Miloš Radovanović & Zoran Ognjanović & Aleksandar Pejović & Tatjana Jakšić Krüger, 2014. "The structure and evolution of scientific collaboration in Serbian mathematical journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1805-1830, December.
    5. Jason Cory Brunson & Steve Fassino & Antonio McInnes & Monisha Narayan & Brianna Richardson & Christopher Franck & Patrick Ion & Reinhard Laubenbacher, 2014. "Evolutionary events in a mathematical sciences research collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 973-998, June.
    6. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    7. Sheridan, Paul & Yagahara, Yuichi & Shimodaira, Hidetoshi, 2012. "Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5031-5040.
    8. Tsouchnika, Maria & Smolyak, Alex & Argyrakis, Panos & Havlin, Shlomo, 2022. "Patent collaborations: From segregation to globalization," Journal of Informetrics, Elsevier, vol. 16(1).
    9. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    10. Zheng Xie, 2019. "A cooperative game model for the multimodality of coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 503-519, October.
    11. Hochull Choe & Duk Hee Lee, 2017. "The structure and change of the research collaboration network in Korea (2000–2011): network analysis of joint patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 917-939, May.
    12. Çavuşoğlu, Abdullah & Türker, İlker, 2014. "Patterns of collaboration in four scientific disciplines of the Turkish collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 220-229.
    13. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    14. Sergi Lozano & Xosé-Pedro Rodríguez & Alex Arenas, 2014. "Atapuerca: evolution of scientific collaboration in an emergent large-scale research infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1505-1520, February.
    15. Zheng Xie & Zonglin Xie & Miao Li & Jianping Li & Dongyun Yi, 2017. "Modeling the coevolution between citations and coauthorship of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 483-507, July.
    16. Noémi Gaskó & Rodica Ioana Lung & Mihai Alexandru Suciu, 2016. "A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 613-632, August.
    17. Susan Biancani & Daniel McFarland, 2013. "Social Networks Research in Higher Education," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 4, pages 85-126.
    18. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    19. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    20. Jiancheng Guan & Lanxin Pang, 2018. "Bidirectional relationship between network position and knowledge creation in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 201-222, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:523-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.