IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v432y2015icp222-229.html
   My bibliography  Save this article

Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface

Author

Listed:
  • Adesanya, Samuel O.
  • Makinde, Oluwole D.

Abstract

In this work, an analytical study of inherent irreversibility in the thin film flow of a viscous incompressible couple stress fluid down an inclined heated channel with adiabatic free surface is investigated. It is assumed that the fluid viscosity varies exponentially with temperature. Analytical expressions for fluid velocity and temperature are derived and used to compute entropy generation rate, irreversibility distribution ratio in the flow field and results are presented graphically and discussed.

Suggested Citation

  • Adesanya, Samuel O. & Makinde, Oluwole D., 2015. "Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 222-229.
  • Handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:222-229
    DOI: 10.1016/j.physa.2015.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500179X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makinde, O.D., 2007. "Hermite–Padé approximation approach to steady flow of a liquid film with adiabatic free surface along an inclined heat plate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 1-7.
    2. Sajid, M. & Hayat, T., 2008. "The application of homotopy analysis method to thin film flows of a third order fluid," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 506-515.
    3. Mahmud, Shohel & Fraser, Roydon Andrew, 2003. "Mixed convection–radiation interaction in a vertical porous channel: Entropy generation," Energy, Elsevier, vol. 28(15), pages 1557-1577.
    4. Siddiqui, A.M. & Mahmood, R. & Ghori, Q.K., 2008. "Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 140-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
    2. Hassan, Anthony R., 2020. "The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    4. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golbabai, A. & Keramati, B., 2008. "Modified homotopy perturbation method for solving Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1528-1537.
    2. AL-Jawary, M.A., 2017. "A semi-analytical iterative method for solving nonlinear thin film flow problems," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 52-56.
    3. Alomari, A.K. & Noorani, M.S.M. & Nazar, R., 2009. "On the homotopy analysis method for the exact solutions of Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1873-1879.
    4. H. X. Mamatova & Z. K. Eshkuvatov & Sh. Ismail, 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    5. Yadav, Pramod Kumar & Yadav, Nitisha, 2024. "Magnetohydrodynamic study of Micropolar fluid flow in the porous walled channel with variable viscosity and thermal conductivity: HAM Solution," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    7. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    8. Torabi, Mohsen & Zhang, Kaili, 2015. "Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls," Energy, Elsevier, vol. 87(C), pages 540-554.
    9. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    10. Lior, Noam & Sarmiento-Darkin, Wladimir & Al-Sharqawi, Hassan S., 2006. "The exergy fields in transport processes: Their calculation and use," Energy, Elsevier, vol. 31(5), pages 553-578.
    11. Chtchelkatchev, N.M. & Ryltsev, R.E. & Mikheyenkov, A.V. & Valiulin, V.E. & Polishchuk, I.Ya., 2023. "Description of a glass transition with immeasurable structural relaxation time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Golbabai, A. & Keramati, B., 2009. "Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2316-2321.
    13. Anandalakshmi, R. & Kaluri, Ram Satish & Basak, Tanmay, 2011. "Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls," Energy, Elsevier, vol. 36(8), pages 4879-4896.
    14. Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
    15. Agudelo, Andrés & Cortés, Cristóbal, 2010. "Thermal radiation and the second law," Energy, Elsevier, vol. 35(2), pages 679-691.
    16. Siavashi, Majid & Talesh Bahrami, Hamid Reza & Saffari, Hamid, 2015. "Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture ," Energy, Elsevier, vol. 93(P2), pages 2451-2466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:222-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.