IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i3p1253-1258.html
   My bibliography  Save this article

He’s homotopy perturbation method for systems of integro-differential equations

Author

Listed:
  • Biazar, J.
  • Ghazvini, H.
  • Eslami, M.

Abstract

In this article, the homotopy perturbation method [He JH. Homotopy perturbation technique. Comput Meth Appl Mech Eng 1999;178:257–62; He JH. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Non-Linear Mech 2000;35(1):37–43; He JH. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 2004;156:527–39; He JH. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 2003;135:73–79; He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 2004;151:287–92; He JH. Application of homotopy perturbation method to nonlinear wave equations Chaos, Solitons & Fractals 2005;26:695–700] is applied to solve linear and nonlinear systems of integro-differential equations. Some nonlinear examples are presented to illustrate the ability of the method for such system. Examples for linear system are so easy that has been ignored.

Suggested Citation

  • Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1253-1258
    DOI: 10.1016/j.chaos.2007.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907003645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddiqui, A.M. & Zeb, A. & Ghori, Q.K. & Benharbit, A.M., 2008. "Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 182-192.
    2. Abbasbandy, S., 2007. "Application of He’s homotopy perturbation method to functional integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1243-1247.
    3. Siddiqui, A.M. & Mahmood, R. & Ghori, Q.K., 2008. "Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 140-147.
    4. Cveticanin, L., 2006. "Homotopy–perturbation method for pure nonlinear differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1221-1230.
    5. Öziş, Turgut & Yıldırım, Ahmet, 2007. "A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 989-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvandi, Azizallah & Paripour, Mahmoud, 2019. "The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 151-160.
    2. Sadaf, Hina & Akbar, Muhammad Usman & Nadeem, S., 2018. "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 16-36.
    3. Chandra Guru Sekar, R. & Murugesan, K., 2016. "System of linear second order Volterra integro-differential equations using Single Term Walsh Series technique," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 484-492.
    4. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Deep, Amar & Deepmala, & Rabbani, Mohsen, 2021. "A numerical method for solvability of some non-linear functional integral equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    6. Sahu, P.K. & Ray, S.Saha, 2015. "Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 715-723.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    2. Golbabai, A. & Keramati, B., 2009. "Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2316-2321.
    3. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    4. Golbabai, A. & Keramati, B., 2008. "Modified homotopy perturbation method for solving Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1528-1537.
    5. H. X. Mamatova & Z. K. Eshkuvatov & Sh. Ismail, 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    6. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    7. Cveticanin, L., 2009. "Application of homotopy-perturbation to non-linear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 221-228.
    8. Beléndez, A. & Beléndez, T. & Neipp, C. & Hernández, A. & Álvarez, M.L., 2009. "Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 746-764.
    9. Golbabai, A. & Keramati, B., 2008. "Easy computational approach to solution of system of linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 568-574.
    10. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    11. Zeng, De-Qiang, 2009. "Nonlinear oscillator with discontinuity by the max–min approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2885-2889.
    12. Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
    13. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.
    14. Fathizadeh, M. & Rashidi, F., 2009. "Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2413-2419.
    15. Mosleh, Maryam & Otadi, Mahmood, 2015. "Least squares approximation method for the solution of Hammerstein–Volterra delay integral equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 105-110.
    16. Ramos, J.I., 2009. "An artificial parameter–Linstedt–Poincaré method for oscillators with smooth odd nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 380-393.
    17. Sabermahani, Sedigheh & Ordokhani, Yadollah, 2021. "General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    18. Nicolae Herisanu & Bogdan Marinca & Vasile Marinca, 2022. "Dynamics of the Vibro-Impact Nonlinear Damped and Forced Oscillator under the Influence of the Electromagnetic Actuation," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    19. Moosaei, H. & Ketabchi, S. & Noor, M.A. & Iqbal, J. & Hooshyarbakhsh, V., 2015. "Some techniques for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 696-705.
    20. Adesanya, Samuel O. & Makinde, Oluwole D., 2015. "Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 222-229.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1253-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.