An efficient numerical method for simulating multiphase flows using a diffuse interface model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2014.12.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Hyun Geun & Kim, Junseok, 2008. "A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4787-4799.
- Vanherpe, Liesbeth & Wendler, Frank & Nestler, Britta & Vandewalle, Stefan, 2010. "A multigrid solver for phase field simulation of microstructure evolution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(7), pages 1438-1448.
- Foroughi, Sajjad & Jamshidi, Saeid & Masihi, Mohsen, 2013. "Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4772-4786.
- Lee, Hyun Geun & Choi, Jeong-Whan & Kim, Junseok, 2012. "A practically unconditionally gradient stable scheme for the N-component Cahn–Hilliard system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1009-1019.
- Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nadja Adam & Florian Franke & Sebastian Aland, 2020. "A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard Equations," Mathematics, MDPI, vol. 8(8), pages 1-14, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Chaeyoung & Jeong, Darae & Shin, Jaemin & Li, Yibao & Kim, Junseok, 2014. "A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 17-28.
- Hyun Geun Lee & Jaemin Shin & June-Yub Lee, 2019. "A High-Order Convex Splitting Method for a Non-Additive Cahn–Hilliard Energy Functional," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
- Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
- Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
- Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
- Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
- Ruhani, Behrooz & Toghraie, Davood & Hekmatifar, Maboud & Hadian, Mahdieh, 2019. "Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 741-751.
- Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
- Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
- Ahmadi, Mohammad Hossein & Baghban, Alireza & Sadeghzadeh, Milad & Hadipoor, Masoud & Ghazvini, Mahyar, 2020. "Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
- Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
- Li, Chengwu & Zhao, Yuechao & Ai, Dihao & Wang, Qifei & Peng, Zhigao & Li, Yingjun, 2020. "Multi-component LBM-LES model of the air and methane flow in tunnels and its validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
- Jahangiri, Ali & Mohammadi, Samira & Akbari, Mohammad, 2019. "Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 13-26.
- Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
- Lee, Dongsun & Kim, Junseok, 2016. "Comparison study of the conservative Allen–Cahn and the Cahn–Hilliard equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 35-56.
- Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
- Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Toghaniyan, Abolfazl & Zarringhalam, Majid & Akbari, Omid Ali & Sheikh Shabani, Gholamreza Ahmadi & Toghraie, Davood, 2018. "Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 673-689.
More about this item
Keywords
Multiphase flows; Continuum surface force; Surface tension and buoyancy effects; Diffuse interface model; Navier–Stokes equations; Lagrange multiplier;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:423:y:2015:i:c:p:33-50. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.