IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1009-1019.html
   My bibliography  Save this article

A practically unconditionally gradient stable scheme for the N-component Cahn–Hilliard system

Author

Listed:
  • Lee, Hyun Geun
  • Choi, Jeong-Whan
  • Kim, Junseok

Abstract

We present a practically unconditionally gradient stable conservative nonlinear numerical scheme for the N-component Cahn–Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert the N-component Cahn–Hilliard system into a system of N−1 binary Cahn–Hilliard equations and significantly reduces the required computer memory and CPU time. We observe that our numerical solutions are consistent with the linear stability analysis results. We also demonstrate the efficiency of the proposed scheme with various numerical experiments.

Suggested Citation

  • Lee, Hyun Geun & Choi, Jeong-Whan & Kim, Junseok, 2012. "A practically unconditionally gradient stable scheme for the N-component Cahn–Hilliard system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1009-1019.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1009-1019
    DOI: 10.1016/j.physa.2011.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008673
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Hyun Geun & Kim, Junseok, 2008. "A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4787-4799.
    2. Copetti, M.I.M., 2000. "Numerical experiments of phase separation in ternary mixtures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 52(1), pages 41-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Geun Lee & Jaemin Shin & June-Yub Lee, 2019. "A High-Order Convex Splitting Method for a Non-Additive Cahn–Hilliard Energy Functional," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    2. Lee, Chaeyoung & Jeong, Darae & Shin, Jaemin & Li, Yibao & Kim, Junseok, 2014. "A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 17-28.
    3. Lee, Hyun Geun & Kim, Junseok, 2015. "An efficient numerical method for simulating multiphase flows using a diffuse interface model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 423(C), pages 33-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun Geun Lee & Jaemin Shin & June-Yub Lee, 2019. "A High-Order Convex Splitting Method for a Non-Additive Cahn–Hilliard Energy Functional," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    2. Lee, Chaeyoung & Jeong, Darae & Shin, Jaemin & Li, Yibao & Kim, Junseok, 2014. "A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 17-28.
    3. Lee, Hyun Geun & Kim, Junseok, 2015. "An efficient numerical method for simulating multiphase flows using a diffuse interface model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 423(C), pages 33-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1009-1019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.