IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1224-d389737.html
   My bibliography  Save this article

A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard Equations

Author

Listed:
  • Nadja Adam

    (Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany)

  • Florian Franke

    (Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany)

  • Sebastian Aland

    (Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany)

Abstract

We present a discretization method of the Navier–Stokes Cahn–Hilliard equations which offers an impressing simplicity, making it easy to implement a scalable parallel code from scratch. The method is based on a special pressure projection scheme with incomplete pressure iterations. The resulting scheme admits solution by an explicit Euler method. Hence, all unknowns decouple, which enables a very simple implementation. This goes along with the opportunity of a straightforward parallelization, for example, by few lines of Open Multi-Processing (OpenMP) or Message Passing Interface (MPI) routines. Using a standard benchmark case of a rising bubble, we show that the method provides accurate results and good parallel scalability.

Suggested Citation

  • Nadja Adam & Florian Franke & Sebastian Aland, 2020. "A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard Equations," Mathematics, MDPI, vol. 8(8), pages 1-14, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1224-:d:389737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Hyun Geun & Kim, Junseok, 2015. "An efficient numerical method for simulating multiphase flows using a diffuse interface model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 423(C), pages 33-50.
    2. Yilun Shang, 2018. "Resilient Multiscale Coordination Control against Adversarial Nodes," Energies, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    2. Gökay Bayrak & Davut Ertekin & Hassan Haes Alhelou & Pierluigi Siano, 2021. "A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey," Energies, MDPI, vol. 14(20), pages 1-21, October.
    3. Seung-Hyeok Shin & Won-Sok Yoo & Hojong Choi, 2019. "Development of Public Key Cryptographic Algorithm Using Matrix Pattern for Tele-Ultrasound Applications," Mathematics, MDPI, vol. 7(8), pages 1-19, August.
    4. Cheng-Yu Tang & Jun-Ting Lin, 2019. "Bidirectional Power Flow Control of a Multi Input Converter for Energy Storage System," Energies, MDPI, vol. 12(19), pages 1-16, September.
    5. Haneul Ko & Jaewook Lee & Seokwon Jang & Joonwoo Kim & Sangheon Pack, 2019. "Energy Efficient Cooperative Computation Algorithm in Energy Harvesting Internet of Things," Energies, MDPI, vol. 12(21), pages 1-19, October.
    6. Tadeusz Platek, 2019. "Analysis of Ripple Current in the Capacitors of Active Power Filters," Energies, MDPI, vol. 12(23), pages 1-31, November.
    7. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    8. Hassan Raza & Sakander Hayat & Muhammad Imran & Xiang-Feng Pan, 2019. "Fault-Tolerant Resolvability and Extremal Structures of Graphs," Mathematics, MDPI, vol. 7(1), pages 1-19, January.
    9. Jayne Lois G. San Juan & Kathleen B. Aviso & Raymond R. Tan & Charlle L. Sy, 2019. "A Multi-Objective Optimization Model for the Design of Biomass Co-Firing Networks Integrating Feedstock Quality Considerations," Energies, MDPI, vol. 12(12), pages 1-24, June.
    10. Alberto Escalera & Edgardo D. Castronuovo & Milan Prodanović & Javier Roldán-Pérez, 2019. "Reliability Assessment of Distribution Networks with Optimal Coordination of Distributed Generation, Energy Storage and Demand Management," Energies, MDPI, vol. 12(16), pages 1-17, August.
    11. Junwei Cao & Wanlu Zhang & Zeqing Xiao & Haochen Hua, 2019. "Reactive Power Optimization for Transient Voltage Stability in Energy Internet via Deep Reinforcement Learning Approach," Energies, MDPI, vol. 12(8), pages 1-17, April.
    12. Jeng-Wei Lin & Shih-wei Liao & Fang-Yie Leu, 2019. "Sensor Data Compression Using Bounded Error Piecewise Linear Approximation with Resolution Reduction," Energies, MDPI, vol. 12(13), pages 1-20, June.
    13. Dušan Medveď & Michal Kolcun & Marek Pavlík & Ľubomír Beňa & Marián Mešter, 2021. "Analysis of Prosumer Behavior in the Electrical Network," Energies, MDPI, vol. 14(24), pages 1-20, December.
    14. Africa Lopez-Rey & Severo Campinez-Romero & Rosario Gil-Ortego & Antonio Colmenar-Santos, 2019. "Evaluation of Supply–Demand Adaptation of Photovoltaic–Wind Hybrid Plants Integrated into an Urban Environment," Energies, MDPI, vol. 12(9), pages 1-24, May.
    15. Yu Lin Juan, 2019. "A Wide Voltage-Ratio Dual-Output DC Converter for Charging Series-Connected Batteries," Energies, MDPI, vol. 12(9), pages 1-20, April.
    16. Behzad Maleki & Mahyar Ghazvini & Mohammad Hossein Ahmadi & Heydar Maddah & Shahaboddin Shamshirband, 2019. "Moisture Estimation in Cabinet Dryers with Thin-Layer Relationships Using a Genetic Algorithm and Neural Network," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    17. Azhar Ul-Haq & Shah Fahad & Saba Gul & Rui Bo, 2023. "Intelligent Control Schemes for Maximum Power Extraction from Photovoltaic Arrays under Faults," Energies, MDPI, vol. 16(2), pages 1-24, January.
    18. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    19. Cristian Sánchez & Lionel Bloch & Jordan Holweger & Christophe Ballif & Nicolas Wyrsch, 2019. "Optimised Heat Pump Management for Increasing Photovoltaic Penetration into the Electricity Grid," Energies, MDPI, vol. 12(8), pages 1-22, April.
    20. Thomas R. Sadler & Schuyler B. Bucher & Dikssha Sehgal, 2022. "The Driving Forces of Energy-Related CO2 Emissions in the United States: A Decomposition Analysis," Energy and Environment Research, Canadian Center of Science and Education, vol. 12(2), pages 1-1, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1224-:d:389737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.