IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v178y1991i1p17-28.html
   My bibliography  Save this article

Multifractal spectra of multi-affine functions

Author

Listed:
  • Barabási, Albert-László
  • Szépfalusy, Péter
  • Vicsek, Tamás

Abstract

Self-affine functions F(x) with multiscaling height correlations cq(x) ∼xqHq are described in terms of the standard multifractal formalism with a modified assumption for the partition. The corresponding quantities and expressions are shown to exhibit some characteristic differences from the standard ones. According to our calculations the f(α) type spectra are not uniquely determined by the Hq spectrum, but depend on the particular choice which is made for the dependence of N on x, where N is the number of points over which the average is taken. Our results are expected to be relevant in the analysis of signal type data obtained in experiments on systems with an underlying multiplicative process.

Suggested Citation

  • Barabási, Albert-László & Szépfalusy, Péter & Vicsek, Tamás, 1991. "Multifractal spectra of multi-affine functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(1), pages 17-28.
  • Handle: RePEc:eee:phsmap:v:178:y:1991:i:1:p:17-28
    DOI: 10.1016/0378-4371(91)90072-K
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719190072K
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(91)90072-K?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristoufek, Ladislav, 2013. "Mixed-correlated ARFIMA processes for power-law cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6484-6493.
    2. Wang, Fang & Yang, Zhaohui & Wang, Lin, 2016. "Detecting and quantifying cross-correlations by analogous multifractal height cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 954-962.
    3. Alvarez-Ramirez, Jose, 2002. "Characteristic time scales in the American dollar–Mexican peso exchange currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(1), pages 157-170.
    4. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    5. Ladislav Kristoufek, 2016. "Power-law cross-correlations estimation under heavy tails," Papers 1602.05385, arXiv.org, revised Apr 2016.
    6. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    7. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    8. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    9. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    10. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
    11. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    12. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    14. Xi, Caiping & Zhang, Shunning & Xiong, Gang & Zhao, Huichang, 2016. "A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 34-50.
    15. Wang, Fang & Wang, Lin & Chen, Yuming, 2018. "Quantifying the range of cross-correlated fluctuations using a q–L dependent AHXA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 454-464.
    16. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:178:y:1991:i:1:p:17-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.