IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i8p1504-1506.html
   My bibliography  Save this article

On the Amato inequality index

Author

Listed:
  • Arnold, Barry C.

Abstract

Amato (1968) proposed using the length of the Lorenz curve as an index of inequality. The index has been little used, perhaps because of the perceived difficulty in analytically evaluating the value of the index in specific situations. A simple representation of the index as an expectation of a particular convex function is presented here.

Suggested Citation

  • Arnold, Barry C., 2012. "On the Amato inequality index," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1504-1506.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1504-1506
    DOI: 10.1016/j.spl.2012.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Josa & A. Aguado, 2020. "Measuring Unidimensional Inequality: Practical Framework for the Choice of an Appropriate Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(2), pages 541-570, June.
    2. Yong Bao & Xiaotian Liu & Aman Ullah, 2020. "On the Exact Statistical Distribution of Econometric Estimators and Test Statistics," Working Papers 202014, University of California at Riverside, Department of Economics, revised Jun 2020.
    3. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barry Arnold, 2015. "On Zenga and Bonferroni curves," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 25-30, April.
    2. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    3. Ziqing Dong & Yves Tillé & Giovanni M. Giorgi & Alessio Guandalini, 2021. "Linearization and variance estimation of the Bonferroni inequality index," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1008-1029, July.
    4. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    5. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    6. Carmen Puerta & Ana Urrutia, 2012. "Lower and upper tail concern and the rank dependent social evaluation functions," Economics Bulletin, AccessEcon, vol. 32(4), pages 3250-3259.
    7. Ravallion, Martin & Chen, Shaohua, 2003. "Measuring pro-poor growth," Economics Letters, Elsevier, vol. 78(1), pages 93-99, January.
    8. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    9. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    10. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    11. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    12. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    13. Csörgö, Miklós & Zitikis, Ricardas, 1997. "On the rate of strong consistency of Lorenz curves," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 113-121, June.
    14. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    15. Edwin Fourrier-Nicolai & Michel Lubrano, 2019. "The Effect of Aspirations on Inequality: Evidence from the German Reunification using Bayesian Growth Incidence Curves," Working Papers halshs-02122371, HAL.
    16. Gengsheng Qin & Baoying Yang & Nelly Belinga-Hall, 2013. "Empirical likelihood-based inferences for the Lorenz curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 1-21, February.
    17. Gattone, Stefano Antonio & Fortuna, Francesca & Evangelista, Adelia & Di Battista, Tonio, 2022. "Simultaneous confidence bands for the functional mean of convex curves," Econometrics and Statistics, Elsevier, vol. 24(C), pages 183-193.
    18. Yawo A. Noglo & Komivi Afawubo, 2017. "2011-2015: an illustration based on the decomposition of the Gini coefficient using the Shapley value approach," Economics Bulletin, AccessEcon, vol. 37(4), pages 2602-2615.
    19. Magali Jaoul-Grammare & Brice Magdalou, 2013. "Opportunities in Higher Education: An Application to France," Annals of Economics and Statistics, GENES, issue 111-112, pages 295-325.
    20. Fakoor, V. & Ghalibaf, M. Bolbolian & Azarnoosh, H.A., 2011. "Asymptotic behaviors of the Lorenz curve and Gini index in sampling from a length-biased distribution," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1425-1435, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1504-1506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.