IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v16y2017icp3-12.html
   My bibliography  Save this article

Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks

Author

Listed:
  • Rueda, Diego F.
  • Calle, Eusebi

Abstract

Analysis of the interdependencies between interconnected critical infrastructures can help enhance the robustness of the individual infrastructures as well as the overall interconnected infrastructures. One of the most studied interdependent critical infrastructure network scenarios is a power grid connected to a backbone telecommunications network. In this interdependent infrastructure scenario, the robustness of the entire system is usually analyzed in the context of cascading failure models in the power grid. However, this paper focuses on targeted attacks, where an attack on a telecommunications network node directly affects a connected power grid node, and vice versa. Cascading failures are outside the scope of this paper because the objective is to enhance the robustness of the interconnections between the infrastructures. In order to mitigate the impacts of targeted attacks on the interdependent infrastructures, three interdependency matrices for connecting the infrastructures are specified and analyzed. The analysis identifies the interdependency matrix that best reduces the impacts of targeted attacks and the propagation of failures between the infrastructures. Additionally, the impacts of interconnecting a power grid to different telecommunications networks, each with different susceptibilities to targeted attacks, is evaluated.

Suggested Citation

  • Rueda, Diego F. & Calle, Eusebi, 2017. "Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 3-12.
  • Handle: RePEc:eee:ijocip:v:16:y:2017:i:c:p:3-12
    DOI: 10.1016/j.ijcip.2016.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548215300494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2016.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    3. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    4. Martín-Hernández, J. & Wang, H. & Van Mieghem, P. & D’Agostino, G., 2014. "Algebraic connectivity of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 92-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiyan Zhang & Minfang Peng & Josep M. Guerrero & Xingle Gao & Yanchen Liu, 2019. "Modelling and Vulnerability Analysis of Cyber-Physical Power Systems Based on Interdependent Networks," Energies, MDPI, vol. 12(18), pages 1-14, September.
    2. Palleti, Venkata Reddy & Joseph, Jude Victor & Silva, Arlindo, 2018. "A contribution of axiomatic design principles to the analysis and impact of attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 21-32.
    3. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    5. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    6. Xian Yang & Yong Li & Ye Cai & Yijia Cao & Kwang Y. Lee & Zhijian Jia, 2018. "Impact of Road-Block on Peak-Load of Coupled Traffic and Energy Transportation Networks," Energies, MDPI, vol. 11(7), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Wu, Haotian & Scoglio, Caterina & Gruenbacher, Don, 2015. "Robust allocation of weighted dependency links in cyber–physical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 316-327.
    2. Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
    3. Haiyan Zhang & Minfang Peng & Josep M. Guerrero & Xingle Gao & Yanchen Liu, 2019. "Modelling and Vulnerability Analysis of Cyber-Physical Power Systems Based on Interdependent Networks," Energies, MDPI, vol. 12(18), pages 1-14, September.
    4. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    5. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    9. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    10. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    11. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    12. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    14. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    15. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    16. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    17. Gao, Yanli & Chen, Shiming & Zhou, Jie & Zhang, Jingjing & Stanley, H.E., 2020. "Multiple phase transition in the non-symmetrical interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    18. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    19. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    20. Gao, YanLi & Chen, ShiMing & Zhou, Jie & Stanley, H.E. & Gao, Jianxi, 2021. "Percolation of edge-coupled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:16:y:2017:i:c:p:3-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.