IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2096749.html
   My bibliography  Save this article

A Century of Topological Coevolution of Complex Infrastructure Networks in an Alpine City

Author

Listed:
  • Jonatan Zischg
  • Christopher Klinkhamer
  • Xianyuan Zhan
  • P. Suresh C. Rao
  • Robert Sitzenfrei

Abstract

In this paper, we used complex network analysis approaches to investigate topological coevolution over a century for three different urban infrastructure networks. We applied network analyses to a unique time-stamped network data set of an Alpine case study, representing the historical development of the town and its infrastructure over the past 108 years. The analyzed infrastructure includes the water distribution network (WDN), the urban drainage network (UDN), and the road network (RN). We use the dual representation of the network by using the Hierarchical Intersection Continuity Negotiation (HICN) approach, with pipes or roads as nodes and their intersections as edges. The functional topologies of the networks are analyzed based on the dual graphs, providing insights beyond a conventional graph (primal mapping) analysis. We observe that the RN, WDN, and UDN all exhibit heavy tailed node degree distributions with high dispersion around the mean. In 50 percent of the investigated networks, can be approximated with truncated [Pareto] power-law functions, as they are known for scale-free networks. Structural differences between the three evolving network types resulting from different functionalities and system states are reflected in the and other complex network metrics. Small-world tendencies are identified by comparing the networks with their random and regular lattice network equivalents. Furthermore, we show the remapping of the dual network characteristics to the spatial map and the identification of criticalities among different network types through co-location analysis and discuss possibilities for further applications.

Suggested Citation

  • Jonatan Zischg & Christopher Klinkhamer & Xianyuan Zhan & P. Suresh C. Rao & Robert Sitzenfrei, 2019. "A Century of Topological Coevolution of Complex Infrastructure Networks in an Alpine City," Complexity, Hindawi, vol. 2019, pages 1-16, January.
  • Handle: RePEc:hin:complx:2096749
    DOI: 10.1155/2019/2096749
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/2096749.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/2096749.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2096749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bao, Z.J. & Cao, Y.J. & Ding, L.J. & Wang, G.Z., 2009. "Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4491-4498.
    2. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    3. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    4. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    5. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Daniel A. Eisenberg & Jeryang Park & Thomas P. Seager, 2017. "Sociotechnical Network Analysis for Power Grid Resilience in South Korea," Complexity, Hindawi, vol. 2017, pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    2. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    3. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    5. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    6. Ji, Xingpei & Wang, Bo & Liu, Dichen & Dong, Zhaoyang & Chen, Guo & Zhu, Zhenshan & Zhu, Xuedong & Wang, Xunting, 2016. "Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 235-245.
    7. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    8. Keren Chen & Fushuan Wen & Chung-Li Tseng & Minghui Chen & Zeng Yang & Hongwei Zhao & Huiyu Shang, 2019. "A Game Theory-Based Approach for Vulnerability Analysis of a Cyber-Physical Power System," Energies, MDPI, vol. 12(15), pages 1-15, August.
    9. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    10. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    11. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    12. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    13. Alla Kammerdiner & Alexander Semenov & Eduardo L. Pasiliao, 2023. "Flight from COVID-19: Multiscale and Multilayer Analyses of the Epidemic-Induced Network Adaptations," SN Operations Research Forum, Springer, vol. 4(2), pages 1-22, June.
    14. Fang Zhou & Xiang He & Yongbo Yuan & Mingyuan Zhang, 2020. "Influence of Interlink Topology on Multilayer Network Robustness," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    15. Kai Gong & Jia-Jian Wu & Ying Liu & Qing Li & Run-Ran Liu & Ming Tang, 2019. "The Effective Healing Strategy against Localized Attacks on Interdependent Spatially Embedded Networks," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    16. David J. Yu & Michael L. Schoon & Jason K. Hawes & Seungyoon Lee & Jeryang Park & P. Suresh C. Rao & Laura K. Siebeneck & Satish V. Ukkusuri, 2020. "Toward General Principles for Resilience Engineering," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1509-1537, August.
    17. Liu, Kai & Wang, Ming & Zhu, Weihua & Wu, Jinshan & Yan, Xiaoyong, 2018. "Vulnerability analysis of an urban gas pipeline network considering pipeline-road dependency," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 79-89.
    18. Johan Rose Santos & Nur Diana Safitri & Maya Safira & Varun Varghese & Makoto Chikaraishi, 2021. "Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities," Environment and Planning B, , vol. 48(5), pages 1091-1107, June.
    19. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    20. Zhou, Hong-Li & Zhang, Xiao-Dong, 2018. "Dynamic robustness of knowledge collaboration network of open source product development community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 601-612.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2096749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.