Path integral pricing of outside barrier Asian options
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2013.09.067
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
- Montagna, Guido & Nicrosini, Oreste & Moreni, Nicola, 2002. "A path integral way to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 450-466.
- Linetsky, Vadim, 1998. "The Path Integral Approach to Financial Modeling and Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 129-163, April.
- G. Montagna & O. Nicrosini & N. Moreni, 2002. "A Path Integral Way to Option Pricing," Papers cond-mat/0202143, arXiv.org.
- Eleonora Bennati & Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach To Derivative Security Pricing I: Formalism And Analytical Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 381-407.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: I. Formalism and Analytical Results," Papers cond-mat/9901277, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shafi, Khuram & Latif, Natasha & Shad, Shafqat Ali & Idrees, Zahra & Gulzar, Saqib, 2018. "Estimating option greeks under the stochastic volatility using simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1288-1296.
- Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of Wasabi option in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 1-10.
- Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
- Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
- Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
- Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
- Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
- Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
- Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
- Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
- Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
- Yu. A. Kuperin & P. A. Poloskov, 2010. "Analytical and Numerical Approaches to Pricing the Path-Dependent Options with Stochastic Volatility," Papers 1009.4587, arXiv.org.
- Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
- Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
- Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
- Zura Kakushadze, 2015. "Path integral and asset pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1759-1771, November.
- Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
- Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
- Yu. A. Kuperin & P. A. Poloskov, 2010. "American Options Pricing under Stochastic Volatility: Approximation of the Early Exercise Surface and Monte Carlo Simulations," Papers 1009.5495, arXiv.org.
- Marco Rosa-Clot & Stefano Taddei, 2002. "A Path Integral Approach To Derivative Security Pricing Ii: Numerical Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 123-146.
- Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017.
"Dynamic optimization and its relation to classical and quantum constrained systems,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
- Mauricio Contreras & Rely Pellicer & Marcelo Villena, 2016. "Dynamic optimization and its relation to classical and quantum constrained systems," Papers 1607.01317, arXiv.org.
- Moore, Ryleigh A. & Narayan, Akil, 2022. "Adaptive density tracking by quadrature for stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).
More about this item
Keywords
Asian option; Outside barrier option; Wiener integral;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:394:y:2014:i:c:p:266-276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.