IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0202143.html
   My bibliography  Save this paper

A Path Integral Way to Option Pricing

Author

Listed:
  • G. Montagna
  • O. Nicrosini
  • N. Moreni

Abstract

An efficient computational algorithm to price financial derivatives is presented. It is based on a path integral formulation of the pricing problem. It is shown how the path integral approach can be worked out in order to obtain fast and accurate predictions for the value of a large class of options, including those with path-dependent and early exercise features. As examples, the application of the method to European and American options in the Black-Scholes model is illustrated. A particularly simple and fast semi-analytical approximation for the price of American options is derived. The results of the algorithm are compared with those obtained with the standard procedures known in the literature and found to be in good agreement.

Suggested Citation

  • G. Montagna & O. Nicrosini & N. Moreni, 2002. "A Path Integral Way to Option Pricing," Papers cond-mat/0202143, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0202143
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0202143
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    2. Baaquie, Belal E. & Liang, Cui, 2007. "Pricing American options for interest rate caps and coupon bonds in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 285-316.
    3. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    4. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    5. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    6. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    7. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2004. "Applications of δ-function perturbation to the pricing of derivative securities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 677-692.
    8. Grillo, Sebastian & Blanco, Gerardo & Schaerer, Christian E., 2015. "Path integration for real options," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 120-132.
    9. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    10. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    11. Zura Kakushadze, 2015. "Path integral and asset pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1759-1771, November.
    12. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    14. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    15. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    16. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    17. DECAMPS, Marc & DE SCHEPPER, Ann & GOOVAERTS, Marc, "undated". "Path integrals as a tool for pricing interest rate contingent claims: The case of reflecting and absorbing boundaries," Working Papers 2003027, University of Antwerp, Faculty of Business and Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0202143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.