IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v431y2022ics0096300322003721.html
   My bibliography  Save this article

Adaptive density tracking by quadrature for stochastic differential equations

Author

Listed:
  • Moore, Ryleigh A.
  • Narayan, Akil

Abstract

Density tracking by quadrature (DTQ) is a numerical procedure for computing solutions to Fokker-Planck equations that describe probability densities for stochastic differential equations (SDEs). In this paper, we extend upon existing trapezoidal quadrature rule DTQ procedures by utilizing a flexible quadrature rule that allows for unstructured, adaptive meshes. We describe the procedure for N-dimensions, and demonstrate that the resulting adaptive procedure can be significantly more efficient than the trapezoidal DTQ method. We show examples of our procedure for problems ranging from one to five dimensions.

Suggested Citation

  • Moore, Ryleigh A. & Narayan, Akil, 2022. "Adaptive density tracking by quadrature for stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003721
    DOI: 10.1016/j.amc.2022.127298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eleonora Bennati & Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach To Derivative Security Pricing I: Formalism And Analytical Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 381-407.
    2. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: II. Numerical Methods," Papers cond-mat/9901279, arXiv.org.
    3. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: I. Formalism and Analytical Results," Papers cond-mat/9901277, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    2. Igor Halperin, 2021. "Distributional Offline Continuous-Time Reinforcement Learning with Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L)," Papers 2104.01040, arXiv.org.
    3. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    4. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    5. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    6. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    7. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    8. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    9. Yu. A. Kuperin & P. A. Poloskov, 2010. "American Options Pricing under Stochastic Volatility: Approximation of the Early Exercise Surface and Monte Carlo Simulations," Papers 1009.5495, arXiv.org.
    10. Yu. A. Kuperin & P. A. Poloskov, 2010. "Analytical and Numerical Approaches to Pricing the Path-Dependent Options with Stochastic Volatility," Papers 1009.4587, arXiv.org.
    11. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    12. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    13. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.
    14. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    15. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    16. Montagna, Guido & Nicrosini, Oreste & Moreni, Nicola, 2002. "A path integral way to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 450-466.
    17. Marco Rosa-Clot & Stefano Taddei, 2002. "A Path Integral Approach To Derivative Security Pricing Ii: Numerical Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 123-146.
    18. L. Ingber & C. Chen & R.P. Mondescu & D. Muzzall & M. Renedo, 2001. "Probability tree algorithm for general diffusion processes," Lester Ingber Papers 01pt, Lester Ingber.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.