IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v413y2014icp1-10.html
   My bibliography  Save this article

Path integral pricing of Wasabi option in the Black–Scholes model

Author

Listed:
  • Cassagnes, Aurelien
  • Chen, Yu
  • Ohashi, Hirotada

Abstract

In this paper, using path integral techniques, we derive a formula for a propagator arising in the study of occupation time derivatives. Using this result we derive a fair price for the case of the cumulative Parisian option. After confirming the validity of the derived result using Monte Carlo simulation, a new type of heavily path dependent derivative product is investigated. We derive an approximation for our so-called Wasabi option fair price and check the accuracy of our result with a Monte Carlo simulation.

Suggested Citation

  • Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of Wasabi option in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 1-10.
  • Handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:1-10
    DOI: 10.1016/j.physa.2014.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114005792
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2006. "Pricing exotic options in a path integral approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 55-66.
    2. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    3. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    4. Linetsky, Vadim, 1998. "The Path Integral Approach to Financial Modeling and Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 129-163, April.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2004. "Pricing Exotic Options in a Path Integral Approach," Papers cond-mat/0407321, arXiv.org, revised May 2006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    2. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    3. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    4. Giacomo Bormetti & Giorgia Callegaro & Giulia Livieri & Andrea Pallavicini, 2015. "A backward Monte Carlo approach to exotic option pricing," Papers 1511.00848, arXiv.org.
    5. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    6. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    7. Anantya Bhatnagar & Dimitri D. Vvedensky, 2022. "Quantum effects in an expanded Black–Scholes model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
    8. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Lourdes Gómez-Valle & Miguel Angel López-Marcos & Julia Martínez-Rodríguez, 2020. "Two New Strategies for Pricing Freight Options by Means of a Valuation PDE and by Functional Bounds," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    11. Asbjørn T. Hansen & Peter Løchte Jørgensen, 2000. "Analytical Valuation of American-Style Asian Options," Management Science, INFORMS, vol. 46(8), pages 1116-1136, August.
    12. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    13. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    14. P. Pellizzari, 1998. "Efficient Monte Carlo Pricing of Basket Options," Finance 9801001, University Library of Munich, Germany.
    15. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2095-2114.
    16. Zhang, Kun & Liu, Jing & Wang, Erkang & Wang, Jin, 2017. "Quantifying risks with exact analytical solutions of derivative pricing distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 757-766.
    17. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    18. Hideharu Funahashi & Masaaki Kijima, 2017. "A unified approach for the pricing of options relating to averages," Review of Derivatives Research, Springer, vol. 20(3), pages 203-229, October.
    19. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    20. Tomáš Tichý, 2008. "Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování [Examination of selected improvement approaches to Monte Carlo simulation in option pricing]," Politická ekonomie, Prague University of Economics and Business, vol. 2008(6), pages 772-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.