IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v179y1991i3p442-470.html
   My bibliography  Save this article

Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection

Author

Listed:
  • Pandey, R.B.

Abstract

In order to understand the evolution of cell population in an early HIV infection (AIDS), a network model of interacting cellular elements, such as macrophages, viruses, T4 cells, and T8 cells, is introduced for a cell mediated response. In a simplified discrete representation of binary cells, boolean expressions are used to describe their interactions and concentrations. Two different interaction models are considered and flows of configurations are studied in their configurational phase space. In the mean field (or infinite range interacting network) treatment, one interaction gives two fixed points describing the extreme limits of “immuno-competence” and “immunodeficiency”; in addition, it gives rise to a periodic cycle consisting of an “infected”, a “severely infected”, and a “susceptible” state. The other interaction leads to seven fixed points, two of which are the same as those in the first. The third fixed point represents a “severely infected” state, and the remaining four describe “susceptible” states of varying order. Growth and decay of cellular elements are then studied on a simple cubic lattice where nearest neighbor interactions are treated by inhomogeneous cellular automata using computer simulations. In order to take into account the sporadic growth of virions, an interaction latency parameter B is introduced, and the decline of immunocompetence as a function of B is discussed. A detail study is presented for the crossover between an immunodeficient and an immunocompetent state as a function of the initial concentration of the host cells and latency/dilution.

Suggested Citation

  • Pandey, R.B., 1991. "Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 179(3), pages 442-470.
  • Handle: RePEc:eee:phsmap:v:179:y:1991:i:3:p:442-470
    DOI: 10.1016/0378-4371(91)90088-T
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719190088T
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(91)90088-T?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, Ramón E.R. & Figueirêdo, P.H. & Coutinho, S., 2020. "Dynamics of HIV Infection: An entropic–energetic view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    3. Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:179:y:1991:i:3:p:442-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.