IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i7p1675-1682.html
   My bibliography  Save this article

Detecting community structure in complex networks based on a measure of information discrepancy

Author

Listed:
  • Zhang, Junhua
  • Zhang, Shihua
  • Zhang, Xiang-Sun

Abstract

Properties of complex networks, such as small-world property, power-law degree distribution, network transitivity, and network- community structure which seem to be common to many real-world networks have attracted great interest among researchers. In this study, global information of the networks is considered by defining the profile of any node based on the shortest paths between it and all the other nodes in the network; then a useful iterative procedure for community detection based on a measure of information discrepancy and the popular modular function Q is presented. The new iterative method does not need any prior knowledge about the community structure and can detect an appropriate number of communities, which can be hub communities or non-hub communities. The computational results of the method on real networks confirm its capability.

Suggested Citation

  • Zhang, Junhua & Zhang, Shihua & Zhang, Xiang-Sun, 2008. "Detecting community structure in complex networks based on a measure of information discrepancy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1675-1682.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:7:p:1675-1682
    DOI: 10.1016/j.physa.2007.10.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107011557
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.10.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Hu & Wei, Hui, 2012. "Detection of community structure in networks based on community coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6156-6164.
    2. Liu, Jian & Liu, Tingzhan, 2010. "Detecting community structure in complex networks using simulated annealing with k-means algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2300-2309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:7:p:1675-1682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.