IDEAS home Printed from https://ideas.repec.org/a/bdd/journl/v18y2024i2p211-228.html
   My bibliography  Save this article

Examining Financial Development and Depth in the Context of Country Groups with the GMM Method

Author

Listed:
  • Aykut SENGUL
  • Levent CINKO

Abstract

Financial development refers to the efficiency, diversity and inclusiveness of financial institutions and markets, while financial depth is defined as the ratio of the size of financial assets to economic size. In order for the funds accumulated in the financial system in a country to be transferred to the real sector and used effectively and efficiently, the level of financial deepening as well as financial development has become important. The main determinants of financial development and financial deepening are analyzed using the GMM method with a data set covering the period 1998-2022 and 60 countries. In this context, while the increase in the consumer price index has a negative effect in line on the mentioned variables with the literature, the upward movement in the level of investment, stock market value, stock market trading volume, external openness, real interest rate and rule of law index positively affect these two indicators. The study examines financial depth and financial development in terms of both developed and developing countries as well as country classification by income groups, and reveals the importance of capital markets in terms of market capitalization and market trading volume. As a result, the largest positive contribution for the country groups including Türkiye comes from investment value and market capitalization.

Suggested Citation

  • Aykut SENGUL & Levent CINKO, 2024. "Examining Financial Development and Depth in the Context of Country Groups with the GMM Method," Journal of BRSA Banking and Financial Markets, Banking Regulation and Supervision Agency, vol. 18(2), pages 211-228.
  • Handle: RePEc:bdd:journl:v:18:y:2024:i:2:p:211-228
    as

    Download full text from publisher

    File URL: https://www.bddk.org.tr/Content/docs/bddkDergiTr/dergi_0036_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Liu, 2010. "Fuzzy modularity and fuzzy community structure in networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 547-557, October.
    2. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    3. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    4. Lou, Hao & Li, Shenghong & Zhao, Yuxin, 2013. "Detecting community structure using label propagation with weighted coherent neighborhood propinquity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3095-3105.
    5. L. Šubelj & M. Bajec, 2011. "Robust network community detection using balanced propagation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 81(3), pages 353-362, June.
    6. L. Šubelj & M. Bajec, 2012. "Ubiquitousness of link-density and link-pattern communities in real-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(1), pages 1-11, January.
    7. Manav Kaushik & A K Giri, 2020. "Forecasting Foreign Exchange Rate: A Multivariate Comparative Analysis between Traditional Econometric, Contemporary Machine Learning & Deep Learning Techniques," Papers 2002.10247, arXiv.org.
    8. Wang, Xingyuan & Li, Junqiu, 2013. "Detecting communities by the core-vertex and intimate degree in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2555-2563.
    9. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    10. Chen, Qiong & Wu, Ting-Ting & Fang, Ming, 2013. "Detecting local community structures in complex networks based on local degree central nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 529-537.
    11. Li, Junqiu & Wang, Xingyuan & Eustace, Justine, 2013. "Detecting overlapping communities by seed community in weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6125-6134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    2. Wang, Hongjue, 2019. "An universal algorithm for source location in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 620-630.
    3. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    5. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    6. Na Zhang & Yu Yang & Yujie Zheng & Jiafu Su, 2019. "Module partition of complex mechanical products based on weighted complex networks," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1973-1998, April.
    7. Yang, Jin-Xuan & Zhang, Xiao-Dong, 2017. "Finding overlapping communities using seed set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 96-106.
    8. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    9. Zhang, Hong, 2015. "Moderate tolerance promotes tag-mediated cooperation in spatial Prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 52-61.
    10. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    11. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    12. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    13. Li, Yafang & Jia, Caiyan & Yu, Jian, 2015. "A parameter-free community detection method based on centrality and dispersion of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 321-334.
    14. Hosseini-Pozveh, Maryam & Ghorbanian, Maedeh & Tabaiyan, Maryam, 2022. "A label propagation-based method for community detection in directed signed social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Šubelj, Lovro & Bajec, Marko, 2014. "Group detection in complex networks: An algorithm and comparison of the state of the art," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 144-156.
    16. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    17. Jing Wang & Jing Wang & Jingfeng Guo & Liya Wang & Chunying Zhang & Bin Liu, 2023. "Research Progress of Complex Network Modeling Methods Based on Uncertainty Theory," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
    18. Guo, Wei-Feng & Zhang, Shao-Wu, 2016. "A general method of community detection by identifying community centers with affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 508-519.
    19. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    20. Liu, Saisai & Xia, Zhengyou, 2020. "A two-stage BFS local community detection algorithm based on node transfer similarity and Local Clustering Coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    More about this item

    Keywords

    Financial Development; Financial Depth; Capital Markets.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdd:journl:v:18:y:2024:i:2:p:211-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sumeyye Azize CENGIZ (email available below). General contact details of provider: https://edirc.repec.org/data/bddgvtr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.