IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i7p1157-1172.html
   My bibliography  Save this article

On entropy, financial markets and minority games

Author

Listed:
  • Zapart, Christopher A.

Abstract

The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B—Condensed Matter and Complex Systems 15/4 (2000) 733–737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey–Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

Suggested Citation

  • Zapart, Christopher A., 2009. "On entropy, financial markets and minority games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1157-1172.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:7:p:1157-1172
    DOI: 10.1016/j.physa.2008.11.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108009801
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.11.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    2. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    3. Molgedey, Lutz & Ebeling, Werner, 2000. "Intraday patterns and local predictability of high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 420-428.
    4. Emanuel Derman, 2002. "The Perception of Time, Risk and Return During Periods of Speculation," Papers cond-mat/0201345, arXiv.org.
    5. Burgos, E. & Ceva, Horacio & Perazzo, R.P.J., 2005. "Order and disorder in the local evolutionary minority game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 518-538.
    6. David Lamper & Sam Howison & Neil Johnson, 2001. "Predictability of large future changes in a competitive evolving population," OFRC Working Papers Series 2001mf01, Oxford Financial Research Centre.
    7. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    8. Emanuel Derman, 2002. "The perception of time, risk and return during periods of speculation," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 282-296.
    9. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
    10. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    11. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    12. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    13. Paul Jefferies & Michael Hart & Neil Johnson & P.M. Hui, 2001. "From market games to real-world markets," OFRC Working Papers Series 2001mf02, Oxford Financial Research Centre.
    14. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    15. P. Jefferies & M.L. Hart & P.M. Hui & N.F. Johnson, 2001. "From market games to real-world markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 493-501, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    2. Xu, C. & Gu, G.-Q. & Hui, P.M., 2024. "Impacts of an expert’s opinion on the collective performance of a competing population for limited resources," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    2. Ferreira, Fernando F & Francisco, Gerson & Machado, Birajara S & Muruganandam, Paulsamy, 2003. "Time series analysis for minority game simulations of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 619-632.
    3. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    4. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    5. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    6. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    7. Elena Green & Daniel M. Heffernan, 2019. "An Agent-Based Model to Explain the Emergence of Stylised Facts in Log Returns," Papers 1901.05053, arXiv.org.
    8. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    9. Andersen, Jørgen Vitting & de Peretti, Philippe, 2021. "Heuristics in experiments with infinitely large strategy spaces," Journal of Business Research, Elsevier, vol. 129(C), pages 612-620.
    10. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    11. Matteo Ortisi & Valerio Zuccolo, 2012. "From Minority Game to Black & Scholes pricing," Papers 1205.2521, arXiv.org, revised May 2013.
    12. Jørgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Post-Print hal-02435934, HAL.
    13. Yong Shi & Bo Li & Guangle Du, 2021. "Pyramid scheme in stock market: a kind of financial market simulation," Papers 2102.02179, arXiv.org, revised Feb 2021.
    14. Jørgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02435934, HAL.
    15. J{o}rgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Papers 2005.02337, arXiv.org.
    16. Wei, J.R. & Huang, J.P. & Hui, P.M., 2013. "An agent-based model of stock markets incorporating momentum investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2728-2735.
    17. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    18. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    19. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    20. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:7:p:1157-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.