IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0901.0447.html
   My bibliography  Save this paper

Evaluating the performance of adapting trading strategies with different memory lengths

Author

Listed:
  • Andreas Krause

Abstract

We propose a prediction model based on the minority game in which traders continuously evaluate a complete set of trading strategies with different memory lengths using the strategies' past performance. Based on the chosen trading strategy they determine their prediction of the movement for the following time period of a single asset. We find empirically using stocks from the S&P500 that our prediction model yields a high success rate of over 51.5% and produces higher returns than a buy-and-hold strategy. Even when taking into account trading costs we find that using the predictions will generate superior investment portfolios.

Suggested Citation

  • Andreas Krause, 2009. "Evaluating the performance of adapting trading strategies with different memory lengths," Papers 0901.0447, arXiv.org.
  • Handle: RePEc:arx:papers:0901.0447
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0901.0447
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2000. "Modeling market mechanism with minority game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 276(1), pages 284-315.
    2. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    3. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    4. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    5. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    6. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    7. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    8. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    9. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    10. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    11. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    12. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    13. Nam, Kiseok & Washer, Kenneth M. & Chu, Quentin C., 2005. "Asymmetric return dynamics and technical trading strategies," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 391-418, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Wawrzyniak & Wojciech Wi'slicki, 2013. "Grand canonical minority game as a sign predictor," Papers 1309.3399, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    2. Andersen, Jørgen Vitting & de Peretti, Philippe, 2021. "Heuristics in experiments with infinitely large strategy spaces," Journal of Business Research, Elsevier, vol. 129(C), pages 612-620.
    3. Jørgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Post-Print hal-02435934, HAL.
    4. Jørgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02435934, HAL.
    5. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    6. J{o}rgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Papers 2005.02337, arXiv.org.
    7. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    8. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    9. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.
    10. Groot, Robert D. & Musters, Pieter A.D., 2005. "Minority Game of price promotions in fast moving consumer goods markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 533-547.
    11. Guglielmo Maria Caporale & Antoaneta Serguieva & Hao Wu, 2009. "Financial contagion: evolutionary optimization of a multinational agent‐based model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 111-125, January.
    12. Linde, Jona & Gietl, Daniel & Sonnemans, Joep & Tuinstra, Jan, 2023. "The effect of quantity and quality of information in strategy tournaments," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 305-323.
    13. Gao, Yan & Li, Honggang, 2011. "A consolidated model of self-fulfilling expectations and self-destroying expectations in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 77(3), pages 368-381, March.
    14. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    15. Ferreira, Fernando F & Francisco, Gerson & Machado, Birajara S & Muruganandam, Paulsamy, 2003. "Time series analysis for minority game simulations of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 619-632.
    16. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    17. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    18. Alireza Namdari & Tariq S. Durrani, 2021. "A Multilayer Feedforward Perceptron Model in Neural Networks for Predicting Stock Market Short-term Trends," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
    19. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    20. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.0447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.