IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2001mf02.html
   My bibliography  Save this paper

From market games to real-world markets

Author

Listed:
  • Paul Jefferies
  • Michael Hart
  • Neil Johnson
  • P.M. Hui

Abstract

This paper uses the development of multi-agent market models to present a unified approach to the joint questions of how financial market movements may be simulated, predicted, and hedged against. We first present the results of agent-based market simulations in which traders equipped with simple buy/sell strategies and limited information compete in speculatory trading. We examine the efect of diferent market clearing mechanisms and show that implementation of a simple Walrasian auction leads to unstable market dynamics. We then show that a more realistic out-of-equilibrium clearing process leads to dynamics that closely resemble real financial movements, with fat-tailed price increments, clustered volatility and high volume autocorrelation. We then show that replacing the `synthetic' price history used by these simulations with data taken from real financial time-series leads to the remarkable result that the agents can collectively learn to identify moments in the market where profit is attainable. Hence on real financial data, the system as a whole can perform better than random. We then employ the risk-control formalism of Bouchaud and Sornette in conjunction with agent based models to show that in general risk cannot be eliminated from trading with these models. We also show that, in the presence of transaction costs, the risk of option writing is greatly increased. This risk, and the costs, can however be reduced through the use of a delta-hedging strategy with modified, time-dependent volatility structure.

Suggested Citation

  • Paul Jefferies & Michael Hart & Neil Johnson & P.M. Hui, 2001. "From market games to real-world markets," OFRC Working Papers Series 2001mf02, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2001mf02
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2001mf02.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Ortisi & Valerio Zuccolo, 2012. "From Minority Game to Black & Scholes pricing," Papers 1205.2521, arXiv.org, revised May 2013.
    2. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    3. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    4. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    5. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    6. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    7. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    8. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    9. Ferreira, Fernando F & Francisco, Gerson & Machado, Birajara S & Muruganandam, Paulsamy, 2003. "Time series analysis for minority game simulations of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 619-632.
    10. Gou, Chengling, 2006. "Deduction of initial strategy distributions of agents in mix-game models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 633-640.
    11. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    12. Elena Green & Daniel M. Heffernan, 2019. "An Agent-Based Model to Explain the Emergence of Stylised Facts in Log Returns," Papers 1901.05053, arXiv.org.
    13. Montserrat Reyna Miranda & Ricardo Massa Roldán & Vicente Gómez Salcido, 2022. "Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(1), pages 1-23, Enero - M.
    14. Zapart, Christopher A., 2009. "On entropy, financial markets and minority games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1157-1172.
    15. Stefan Thurner & Rudolf Hanel & Stefan Pichler, 2003. "Risk trading, network topology and banking regulation," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 306-319.
    16. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    17. Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    18. Liu, Xinghua & Gregor, Shirley & Yang, Jianmei, 2008. "The effects of behavioral and structural assumptions in artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2535-2546.
    19. Yong Shi & Bo Li & Guangle Du, 2021. "Pyramid scheme in stock market: a kind of financial market simulation," Papers 2102.02179, arXiv.org, revised Feb 2021.
    20. James T. Wilkinson & Jacob Kelter & John Chen & Uri Wilensky, 2024. "A Network Simulation of OTC Markets with Multiple Agents," Papers 2405.02480, arXiv.org.
    21. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    22. Wei, J.R. & Huang, J.P. & Hui, P.M., 2013. "An agent-based model of stock markets incorporating momentum investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2728-2735.
    23. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    24. Ohira, Toru & Sazuka, Naoya & Marumo, Kouhei & Shimizu, Tokiko & Takayasu, Misako & Takayasu, Hideki, 2002. "Predictability of currency market exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 368-374.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2001mf02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.