IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v355y2005i2p619-632.html
   My bibliography  Save this article

A maximum likelihood estimator for long-range persistence

Author

Listed:
  • Guerrero, Alexandra
  • Smith, Leonard A.

Abstract

A wide variety of processes are thought to show “long-range persistence”, specifically an autocorrelation function with power-law decay. A variety of methods have been proposed to quantify this power-law decay, and weather and climate systems, among others, have been claimed to show long-range persistence. In this paper we present a new approach, defining and illustrating a new maximum likelihood estimator of the persistence exponent H. This method provides estimates of H at each time scale considered, as well as meaningful uncertainty estimates. Several independent realisations of processes with a known degree of long-range persistence are used to test the accuracy of the new estimator in terms of spread and bias. The persistence exponent of temperature data is estimated and the problems of using observational data are addressed.

Suggested Citation

  • Guerrero, Alexandra & Smith, Leonard A., 2005. "A maximum likelihood estimator for long-range persistence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 619-632.
  • Handle: RePEc:eee:phsmap:v:355:y:2005:i:2:p:619-632
    DOI: 10.1016/j.physa.2005.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105001962
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    2. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damian G Kelty-Stephen, 2018. "Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    4. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    6. Zhang, Yin & Li, Jin & Wang, Jun, 2017. "Exploring stability of entropy analysis for signal with different trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 60-67.
    7. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    8. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    9. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    10. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    11. Mehmet Dalkir, 2005. "A New Method For Estimating The Order Of Integration Of Fractionally Integrated Processes Using Bispectra," Econometrics 0507001, University Library of Munich, Germany, revised 07 Jul 2005.
    12. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    13. Ørregaard Nielsen, Morten, 2004. "Local empirical spectral measure of multivariate processes with long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 145-166, January.
    14. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    15. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    16. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    17. Mehmet Balcilar & Zeynel Abidin Ozdemir & Esin Cakan, 2015. "Structural Breaks, Long Memory, or Unit Roots in Stock Prices: Evidence from Emerging Markets," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 13-33, April.
    18. Kühl, Michael, 2007. "Cointegration in the foreign exchange market and market efficiency since the introduction of the Euro: Evidence based on bivariate cointegration analyses," University of Göttingen Working Papers in Economics 68, University of Goettingen, Department of Economics.
    19. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2009. "Fractality in electrocardiographic waveforms for healthy subjects and patients with ventricular fibrillation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1046-1054.
    20. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:355:y:2005:i:2:p:619-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.