IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v353y2005icp323-335.html
   My bibliography  Save this article

Independence and symbolic independence of nonstationary heartbeat series during atrial fibrillation

Author

Listed:
  • Cammarota, Camillo
  • Rogora, Enrico

Abstract

Heartbeat intervals during atrial fibrillation are commonly believed to form a series of almost independent variables. The series extracted from 24h Holter recordings show a nonstationary behavior. Because of nonstationarity it is difficult to give a quantitative measure of independence. In this paper, we use and compare two methods for this. The first is a classical method which models a nonstationary series using a linear Gaussian state space model. In this framework, the independence is tested on the stationary sequence of the residuals. The second method codes data into permutations and tests the uniformity of their distribution. This test assumes as null hypothesis a weaker form of independence which we call symbolic independence. We discuss some advantages of symbolic independence in the context of heartbeat series. We analyze the time series of heartbeat intervals from 24h Holter recordings of nine subjects with chronic atrial fibrillation and find that the detrended series is a zero or one memory process for 83% of regular segments and is symbolically independent for 93% of segments.

Suggested Citation

  • Cammarota, Camillo & Rogora, Enrico, 2005. "Independence and symbolic independence of nonstationary heartbeat series during atrial fibrillation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 323-335.
  • Handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:323-335
    DOI: 10.1016/j.physa.2005.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105000774
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Degli Esposti, M. & Farinelli, C. & Menconi, G., 2009. "Sequence distance via parsing complexity: Heartbeat signals," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 991-999.
    2. Camillo Cammarota, 2011. "The difference-sign runs length distribution in testing for serial independence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1033-1043, February.
    3. Cammarota, Camillo & Rogora, Enrico, 2007. "Time reversal, symbolic series and irreversibility of human heartbeat," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1649-1654.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    3. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    4. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    5. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    6. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    7. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    8. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    10. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    11. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    12. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    13. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    14. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    16. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    17. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    18. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    19. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:323-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.