IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v344y2004i1p95-99.html
   My bibliography  Save this article

Ultrametricity in fund of funds diversification

Author

Listed:
  • Miceli, M.A.
  • Susinno, G.

Abstract

Minimum market transparency requirements impose hedge fund (HF) managers to use the statement declared strategy in practice. However, each declared strategy may actually generate a multiplicity of implemented management decisions. Is then the “actual ” strategy the same as the “announced” strategy? Can the actual strategy be monitored or compared to the actual strategy of HF belonging to the same “announced” class? Can the announced or actual strategy be used as a quantitative argument in the fund of funds policy? With the appropriate metric, it is possible to draw a minimum spanning tree (MST) to emphasize the similarity structure that could be hidden in the raw correlation matrix of HF returns.

Suggested Citation

  • Miceli, M.A. & Susinno, G., 2004. "Ultrametricity in fund of funds diversification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 95-99.
  • Handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:95-99
    DOI: 10.1016/j.physa.2004.06.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104009136
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.06.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. V. Plerou & P. Gopikrishnan & B. Rosenow & L. A. N. Amaral & T. Guhr & H. E. Stanley, 2001. "A Random Matrix Approach to Cross-Correlations in Financial Data," Papers cond-mat/0108023, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Gloria Polinesi & Maria Cristina Recchioni, 2021. "Filtered clustering for exchange traded fund," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 125-135, January-M.
    3. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    4. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    5. Dhagash Mehta & Dhruv Desai & Jithin Pradeep, 2020. "Machine Learning Fund Categorizations," Papers 2006.00123, arXiv.org.
    6. Sieds, 2021. "Complete Volume LXXV n. 1 2021," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 1-138, January-M.
    7. Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
    8. Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilcox, Diane & Gebbie, Tim, 2007. "An analysis of cross-correlations in an emerging market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 584-598.
    2. khoojine, Arash Sioofy & Han, Dong, 2019. "Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1091-1109.
    3. Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
    4. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    5. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    6. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    7. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    8. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    9. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    10. Shamshuritawati Sharif, 2012. "Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 6(12), pages 1-91, December.
    11. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    12. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    13. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    14. Ben Craig & Martín Saldías, 2016. "Spatial Dependence and Data-Driven Networks of International Banks," IMF Working Papers 2016/184, International Monetary Fund.
    15. Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
    16. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    17. Carlos León & Javier Miguélez, 2020. "Interbank relationship lending in Colombia," Borradores de Economia 1118, Banco de la Republica de Colombia.
    18. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    19. Brida, Juan Gabriel & London, Silvia & Rojas, Mara, 2012. "Convergencia interregional en dinámica de regimenes: el caso del Mercosur [Regional convergence of dynamic of regimens: the case of Mercosur]," MPRA Paper 36863, University Library of Munich, Germany.
    20. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:95-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.