IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v344y2004i1p67-72.html
   My bibliography  Save this article

Signal and noise in financial correlation matrices

Author

Listed:
  • Burda, Zdzisław
  • Jurkiewicz, Jerzy

Abstract

Using Random Matrix Theory one can derive exact relations between the eigenvalue spectrum of the covariance matrix and the eigenvalue spectrum of its estimator (experimentally measured correlation matrix). These relations will be used to analyze a particular case of the correlations in financial series and to show that contrary to earlier claims, correlations can be measured also in the “random” part of the spectrum. Implications for the portfolio optimization are briefly discussed.

Suggested Citation

  • Burda, Zdzisław & Jurkiewicz, Jerzy, 2004. "Signal and noise in financial correlation matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 67-72.
  • Handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:67-72
    DOI: 10.1016/j.physa.2004.06.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104009082
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.06.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eterovic, Nicolas A. & Eterovic, Dalibor S., 2013. "Separating the wheat from the chaff: Understanding portfolio returns in an emerging market," Emerging Markets Review, Elsevier, vol. 16(C), pages 145-169.
    2. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.
    3. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    4. Peter Sinka & Peter J. Zeitsch, 2022. "Hedge Effectiveness of the Credit Default Swap Indices: a Spectral Decomposition and Network Topology Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1375-1412, December.
    5. Juan Pineiro-Chousa & Marcos Vizcaíno-González & Jérôme Caby, 2016. "Analysing voting behaviour in the United States banking sector through eigenvalue decomposition," Applied Economics Letters, Taylor & Francis Journals, vol. 23(12), pages 840-843, August.
    6. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    7. Núñez-Mora, José Antonio & Mata-Mata, Leovardo, 2014. "Una aplicación de la teoría de matrices aleatorias para analizar la variación del rendimiento de diferentes commodities a lo largo del periodo 2000-2012," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(41), pages 7-20, segundo s.
    8. Dalibor Eterovic & Nicolas Eterovic, 2012. "Separating the Wheat from the Chaff: Understanding Portfolio Returns in an Emerging Market," Working Papers wp_025, Adolfo Ibáñez University, School of Government.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    2. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    3. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    4. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    5. Beno^it Collins & David McDonald & Nadia Saad, 2013. "Compound Wishart Matrices and Noisy Covariance Matrices: Risk Underestimation," Papers 1306.5510, arXiv.org.
    6. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Papers 2104.00668, arXiv.org, revised Oct 2021.
    7. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    8. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    9. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.
    10. Leonidas Sandoval Junior & Adriana Bruscato & Maria Kelly Venezuela, 2012. "Building portfolios of stocks in the S\~ao Paulo Stock Exchange using Random Matrix Theory," Papers 1201.0625, arXiv.org, revised Mar 2013.
    11. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    12. Takashi Shinzato, 2015. "Self-Averaging Property of Minimal Investment Risk of Mean-Variance Model," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    13. El Alaoui, Marwane, 2015. "Random matrix theory and portfolio optimization in Moroccan stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 92-99.
    14. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2007. "Randomly generating portfolio-selection covariance matrices with specified distributional characteristics," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1610-1625, March.
    15. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    16. Giacomo Livan & Jun-ichi Inoue & Enrico Scalas, 2012. "On the non-stationarity of financial time series: impact on optimal portfolio selection," Papers 1205.0877, arXiv.org, revised Jul 2012.
    17. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    18. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.
    19. Caccioli, Fabio & Kondor, Imre & Papp, Gábor, 2015. "Portfolio optimization under expected shortfall: contour maps of estimation error," LSE Research Online Documents on Economics 119463, London School of Economics and Political Science, LSE Library.
    20. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:67-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.