IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02001676.html
   My bibliography  Save this paper

Analysing voting behaviour in the United States banking sector through eigenvalue decomposition

Author

Listed:
  • Juan Pineiro-Chousa

    (USC - Universidade de Santiago de Compostela [Spain])

  • Marcos Vizcaíno-González

    (Universidade da Coruña)

  • Jérôme Caby

    (Ecole Supérieure du Commerce Extérieur - ESCE - International business school)

Abstract

Using data about votes emitted by funds in corporate meetings held by US banks from 2003 to 2013, we propose a novel approach based on eigenvalue decomposition to address the issue of communality in voting decisions. Our results indicate that there is a main underlying feature that contributes to explain this voting behaviour. Also, a dimensionality reduction could be accomplished so that a subset of the original data can replicate the sample. These findings confirm that there may be a sort of homogeneous or systematic component when it comes to explain the voting pattern into the banking industry.

Suggested Citation

  • Juan Pineiro-Chousa & Marcos Vizcaíno-González & Jérôme Caby, 2015. "Analysing voting behaviour in the United States banking sector through eigenvalue decomposition," Post-Print hal-02001676, HAL.
  • Handle: RePEc:hal:journl:hal-02001676
    DOI: 10.1080/13504851.2015.1114568
    Note: View the original document on HAL open archive server: https://hal.science/hal-02001676
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02001676/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/13504851.2015.1114568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Plerou, V & Gopikrishnan, P & Rosenow, B & Amaral, L.A.N & Stanley, H.E, 2000. "A random matrix theory approach to financial cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 374-382.
    2. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    3. Bernd Rosenow & Vasiliki Plerou & Parameswaran Gopikrishnan & Luís A. Nunes Amaral & H. Eugene Stanley, 2000. "Application Of Random Matrix Theory To Study Cross-Correlations Of Stock Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 399-403.
    4. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    5. Natasha Burns & Kristina Minnick, 2013. "Does Say-on-Pay Matter? Evidence from Say-on-Pay Proposals in the United States," The Financial Review, Eastern Finance Association, vol. 48(2), pages 233-258, May.
    6. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    7. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    8. Varsha Kulkarni & Nivedita Deo, 2007. "Correlation and volatility in an Indian stock market: A random matrix approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 101-109, November.
    9. R. Rak & S. Drozdz & J. Kwapien & P. Oswiecimka, 2006. "Correlation matrix decomposition of WIG20 intraday fluctuations," Papers physics/0606041, arXiv.org, revised Nov 2006.
    10. Namaki, A. & Shirazi, A.H. & Raei, R. & Jafari, G.R., 2011. "Network analysis of a financial market based on genuine correlation and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3835-3841.
    11. Wilcox, Diane & Gebbie, Tim, 2007. "An analysis of cross-correlations in an emerging market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 584-598.
    12. Zdzislaw Burda & Jerzy Jurkiewicz, 2003. "Signal and Noise in Financial Correlation Matrices," Papers cond-mat/0312496, arXiv.org, revised Feb 2004.
    13. Burda, Zdzisław & Jurkiewicz, Jerzy, 2004. "Signal and noise in financial correlation matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 67-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Pineiro-Chousa & Marcos Vizcaíno-González & Jérôme Caby, 2018. "Linking market capitalisation and voting pattern in corporate meetings," Post-Print halshs-02001463, HAL.
    2. López-Cabarcos, M. Ángeles & Vizcaíno-González, Marcos & López-Pérez, M. Luisa, 2023. "Gender diversity on boards: Determinants that underlie the proposals for female directors," Technological Forecasting and Social Change, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eterovic, Nicolas A. & Eterovic, Dalibor S., 2013. "Separating the wheat from the chaff: Understanding portfolio returns in an emerging market," Emerging Markets Review, Elsevier, vol. 16(C), pages 145-169.
    2. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    3. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    4. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    5. Nguyen, Q. & Nguyen, N.K.K., 2019. "Composition of the first principal component of a stock index — A comparison between SP500 and VNIndex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Dalibor Eterovic & Nicolas Eterovic, 2012. "Separating the Wheat from the Chaff: Understanding Portfolio Returns in an Emerging Market," Working Papers wp_025, Adolfo Ibáñez University, School of Government.
    7. Cai, Yumei & Cui, Xiaomei & Huang, Qianyun & Sun, Jianqiang, 2017. "Hierarchy, cluster, and time-stable information structure of correlations between international financial markets," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 562-573.
    8. J. Gavin & M. Crane, 2021. "Community Detection in Cryptocurrencies with Potential Applications to Portfolio Diversification," Papers 2108.09763, arXiv.org.
    9. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    10. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    11. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    12. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    13. Peter Sinka & Peter J. Zeitsch, 2022. "Hedge Effectiveness of the Credit Default Swap Indices: a Spectral Decomposition and Network Topology Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1375-1412, December.
    14. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    15. Neeraj & Prasanta K. Panigrahi, 2016. "Causality and Correlations between BSE and NYSE indexes: A Janus Faced Relationship," Papers 1608.07796, arXiv.org.
    16. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    17. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    18. Thomas Guhr & Andreas Schell, 2020. "Exact Multivariate Amplitude Distributions for Non-Stationary Gaussian or Algebraic Fluctuations of Covariances or Correlations," Papers 2011.07570, arXiv.org.
    19. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.
    20. Nick James & Max Menzies, 2021. "Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time," Papers 2107.13926, arXiv.org, revised Dec 2021.

    More about this item

    Keywords

    singular value decomposition; eigenvalue decomposition; Voting behaviour; spectral decomposition; spectral decomposition JEL codes: G01; G21; G32; G34 2;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G - Financial Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02001676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.