IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v322y2003icp620-628.html
   My bibliography  Save this article

Is volatility lognormal? Evidence from Italian futures

Author

Listed:
  • Renò, Roberto
  • Rizza, Rosario

Abstract

We study the unconditional volatility distribution of the Italian futures market, measuring it via Fourier analysis. Our data set consists of all tick-by-tick transactions in 2000 and 2001, a period characterized by unusually high volatility levels in its final part, because of the dramatic events following 11 September 2001. Our results show that the standard assumption of lognormal unconditional volatility has to be rejected for such a turbulent sample, since it is unable to capture the tail behavior of the distribution; a much better description is provided by a Pareto tail.

Suggested Citation

  • Renò, Roberto & Rizza, Rosario, 2003. "Is volatility lognormal? Evidence from Italian futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 620-628.
  • Handle: RePEc:eee:phsmap:v:322:y:2003:i:c:p:620-628
    DOI: 10.1016/S0378-4371(02)02023-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710202023X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)02023-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    3. Nelson M. P. C. Areal & Stephen J. Taylor, 2002. "The realized volatility of FTSE‐100 futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(7), pages 627-648, July.
    4. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    5. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    6. Heiko Ebens, 1999. "Realized Stock Volatility," Economics Working Paper Archive 420, The Johns Hopkins University,Department of Economics, revised Jul 1999.
    7. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    8. Pierre Cizeau & Yanhui Liu & Martin Meyer & C. -K. Peng & H. Eugene Stanley, 1997. "Volatility distribution in the S&P500 Stock Index," Papers cond-mat/9708143, arXiv.org.
    9. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    10. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility and the GARCH forecasting performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 12(3), pages 183-200, July.
    11. Cizeau, Pierre & Liu, Yanhui & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Volatility distribution in the S&P500 stock index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 441-445.
    12. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility of diffusion processes with high frequency data," Economics Letters, Elsevier, vol. 74(3), pages 371-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Grobys, 2024. "Science or scientism? On the momentum illusion," Annals of Finance, Springer, vol. 20(4), pages 479-519, December.
    2. Pasquale, Maria & Renò, Roberto, 2005. "Statistical properties of trading volume depending on size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 518-528.
    3. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    4. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    2. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    3. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    4. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    5. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    6. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
    8. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    9. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    10. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    12. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
    13. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    14. Yang, Yujun & Li, Jianping & Yang, Yimei, 2017. "The cross-correlation analysis of multi property of stock markets based on MM-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 23-33.
    15. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    16. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
    17. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
    18. Takaishi, Tetsuya, 2018. "Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 139-154.
    19. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    20. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:322:y:2003:i:c:p:620-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.