IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v86y2024ics0927538x24001537.html
   My bibliography  Save this article

Optimal investment for asset–liability management with delay and partial information under Ornstein–Uhlenbeck process

Author

Listed:
  • Chen, Dengsheng
  • Yang, Wensheng
  • Wang, Chengben

Abstract

In this paper, we investigate the optimal investment strategy of asset liability management (ALM) with bounded memory and partial information. Suppose that investors invest their assets in a financial market consisting of a risk-free bond and a risk-free stock, while also taking on liabilities, in which the value of liabilities and the price of risky assets satisfy the Ornstein–Uhlenbeck (O–U) processes whose drift terms are unobserved. By constructing a dynamic portfolio of risk-free bonds, risky stocks and liabilities, a stochastic delay differential equation is obtained to depict the surplus process of investor. The ALM problem is formulated as finding the best strategy to maximize the terminal utility of the sum of terminal surplus and some historical wealth under partial information, and the corresponding full information case is also studied as a supplement. For both cases of partial information and full information, we apply the dynamic programming method to derive HJB equations, verification theorems, and closed-form solutions of optimal strategies and value functions. Moreover the relationship between optimal strategy and value function under full information and partial information is also given. Finally, numerical examples are carried out to illustrate the influence of some important parameters on the obtained results.

Suggested Citation

  • Chen, Dengsheng & Yang, Wensheng & Wang, Chengben, 2024. "Optimal investment for asset–liability management with delay and partial information under Ornstein–Uhlenbeck process," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:pacfin:v:86:y:2024:i:c:s0927538x24001537
    DOI: 10.1016/j.pacfin.2024.102402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X24001537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2024.102402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Brachetta & Claudia Ceci, 2019. "A BSDE-based approach for the optimal reinsurance problem under partial information," Papers 1910.05999, arXiv.org, revised May 2020.
    2. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    3. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    4. Brendle, Simon, 2006. "Portfolio selection under incomplete information," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 701-723, May.
    5. Jie Xiong & Zuo Quan Xu & Jiayu Zheng, 2021. "Mean–variance portfolio selection under partial information with drift uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(9), pages 1461-1473, September.
    6. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    7. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.
    8. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    9. Nicole Bäuerle & Ulrich Rieder, 2007. "Portfolio Optimization With Jumps And Unobservable Intensity Process," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 205-224, April.
    10. Brachetta, M. & Ceci, C., 2020. "A BSDE-based approach for the optimal reinsurance problem under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Jie & Ma, Jingtang & Yang, Wensheng, 2023. "Optimal entry decision of unemployment insurance under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 31-52.
    2. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    3. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    4. Michele Longo & Alessandra Mainini, 2016. "Learning And Portfolio Decisions For Crra Investors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-21, May.
    5. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    6. Nicole Bauerle & Gregor Leimcke, 2020. "Robust Optimal Investment and Reinsurance Problems with Learning," Papers 2001.11301, arXiv.org.
    7. Michele Longo & Alessandra Mainini, 2015. "Learning and Portfolio Decisions for HARA Investors," Papers 1502.02968, arXiv.org.
    8. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Sofiene El Aoud & Fr'ed'eric Abergel, 2015. "Performance analysis of the optimal strategy under partial information," Papers 1510.03596, arXiv.org.
    9. Flavio Angelini & Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "Implicit incentives for fund managers with partial information," Computational Management Science, Springer, vol. 18(4), pages 539-561, October.
    10. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2014. "Partial information about contagion risk, self-exciting processes and portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 18-36.
    11. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    12. Wang, Pei & Shen, Yang & Zhang, Ling & Kang, Yuxin, 2021. "Equilibrium investment strategy for a DC pension plan with learning about stock return predictability," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 384-407.
    13. Sarah Bensalem & Nicolás Hernández-Santibáñez & Nabil Kazi-Tani, 2023. "A continuous-time model of self-protection," Finance and Stochastics, Springer, vol. 27(2), pages 503-537, April.
    14. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    15. Bäuerle Nicole & Chen An, 2019. "Optimal retirement planning under partial information," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 37-55, December.
    16. Michele Longo & Alessandra Mainini, 2017. "Welfare effects of information and rationality in portfolio decisions under parameter uncertainty," Papers 1709.04387, arXiv.org.
    17. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    18. Nicole Bauerle & An Chen, 2022. "Optimal investment under partial information and robust VaR-type constraint," Papers 2212.04394, arXiv.org, revised Sep 2023.
    19. Eisenberg, Julia & Fabrykowski, Lukas & Schmeck, Maren Diane, 2021. "Optimal Surplus-dependent Reinsurance under Regime-Switching in a Brownian Risk Model," Center for Mathematical Economics Working Papers 648, Center for Mathematical Economics, Bielefeld University.
    20. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:86:y:2024:i:c:s0927538x24001537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.