IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.04394.html
   My bibliography  Save this paper

Optimal investment under partial information and robust VaR-type constraint

Author

Listed:
  • Nicole Bauerle
  • An Chen

Abstract

This paper extends the utility maximization literature by combining partial information and (robust) regulatory constraints. Partial information is characterized by the fact that the stock price itself is observable by the optimizing financial institution, but the outcome of the market price of the risk $\theta$ is unknown to the institution. The regulator develops either a congruent or distinct perception of the market price of risk in comparison to the financial institution when imposing the Value-at-Risk (VaR) constraint. We also discuss a robust VaR constraint in which the regulator uses a worst-case measure. The solution to our optimization problem takes the same form as in the full information case: optimal wealth can be expressed as a decreasing function of state price density. The optimal wealth is equal to the minimum regulatory financing requirement in the intermediate economic states. The key distinction lies in the fact that the price density in the final state depends on the overall evolution of the estimated market price of risk, denoted as $\hat{\theta}(s)$ or that the upper boundary of the intermediate region exhibits stochastic behavior.

Suggested Citation

  • Nicole Bauerle & An Chen, 2022. "Optimal investment under partial information and robust VaR-type constraint," Papers 2212.04394, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2212.04394
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.04394
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bryan Kelly & Ľuboš Pástor & Pietro Veronesi, 2016. "The Price of Political Uncertainty: Theory and Evidence from the Option Market," Journal of Finance, American Finance Association, vol. 71(5), pages 2417-2480, October.
    2. Jorn Sass & Dorothee Westphal, 2020. "Robust Utility Maximization in a Multivariate Financial Market with Stochastic Drift," Papers 2009.14559, arXiv.org, revised May 2021.
    3. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    4. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Gennotte, Gerard, 1986. "Optimal Portfolio Choice under Incomplete Information," Journal of Finance, American Finance Association, vol. 41(3), pages 733-746, July.
    7. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    8. Honda, Toshiki, 2003. "Optimal portfolio choice for unobservable and regime-switching mean returns," Journal of Economic Dynamics and Control, Elsevier, vol. 28(1), pages 45-78, October.
    9. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    10. Amine Ismail & Huyên Pham, 2019. "Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 174-207, January.
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. Alexander Schied, 2005. "Optimal Investments for Robust Utility Functionals in Complete Market Models," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 750-764, August.
    13. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    14. Jörn Sass & Dorothee Westphal, 2021. "Robust Utility Maximization In A Multivariate Financial Market With Stochastic Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-28, June.
    15. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    16. Chen, An & Pelsser, Antoon & Vellekoop, Michel, 2011. "Modeling non-monotone risk aversion using SAHARA utility functions," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2075-2092, September.
    17. Jörn Sass & Ralf Wunderlich, 2010. "Optimal portfolio policies under bounded expected loss and partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 25-61, August.
    18. Itzhak Gilboa, 2004. "Uncertainty in Economic Theory," Post-Print hal-00756317, HAL.
    19. Brendle, Simon, 2006. "Portfolio selection under incomplete information," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 701-723, May.
    20. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    21. An Chen & Xia Su, 2009. "Knightian uncertainty and insurance regulation decision," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 32(1), pages 13-33, May.
    22. Brandon Julio & Youngsuk Yook, 2012. "Political Uncertainty and Corporate Investment Cycles," Journal of Finance, American Finance Association, vol. 67(1), pages 45-84, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    2. Flavio Angelini & Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "Implicit incentives for fund managers with partial information," Computational Management Science, Springer, vol. 18(4), pages 539-561, October.
    3. Bäuerle Nicole & Chen An, 2019. "Optimal retirement planning under partial information," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 37-55, December.
    4. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    5. Kristoffer Lindensjö, 2016. "Optimal investment and consumption under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 87-107, February.
    6. Michele Longo & Alessandra Mainini, 2016. "Learning And Portfolio Decisions For Crra Investors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-21, May.
    7. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    8. Michele Longo & Alessandra Mainini, 2015. "Learning and Portfolio Decisions for HARA Investors," Papers 1502.02968, arXiv.org.
    9. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    10. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    11. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    12. David Feldman, 2007. "Incomplete information equilibria: Separation theorems and other myths," Annals of Operations Research, Springer, vol. 151(1), pages 119-149, April.
    13. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    14. Chao Deng & Xizhi Su & Chao Zhou, 2020. "Relative wealth concerns with partial information and heterogeneous priors," Papers 2007.11781, arXiv.org.
    15. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    16. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Sofiene El Aoud & Fr'ed'eric Abergel, 2015. "Performance analysis of the optimal strategy under partial information," Papers 1510.03596, arXiv.org.
    17. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    18. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.04394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.