Walrasian objection mechanism and Mas Colell's bargaining set in economies with many commodities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Schjodt, Ulla & Sloth, Birgitte, 1994.
"Bargaining Sets with Small Coalitions,"
International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 49-55.
- Ulla Schjødt & Birgitte Sloth, 1990. "Bargaining Sets with Small Coalitions," Discussion Papers 90-18, University of Copenhagen. Department of Economics.
- Konard Podczeck, 1997. "Markets with infinitely many commodities and a continuum of agents with non-convex preferences (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(3), pages 385-426.
- Podczeck, Konrad, 2008. "On the convexity and compactness of the integral of a Banach space valued correspondence," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 836-852, July.
- Jang, Hyo Seok & Lee, Sangjik, 2020. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 57-64.
- Mehta, Ghanshyam & Tarafdar, Enayet, 1987. "Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar," Journal of Economic Theory, Elsevier, vol. 41(2), pages 333-339, April.
- Schmeidler, David, 1972. "A Remark on the Core of an Atomless Economy," Econometrica, Econometric Society, vol. 40(3), pages 579-580, May.
- Robert M. Anderson & Walter Trockel & Lin Zhou, 1997.
"Nonconvergence of the Mas-Colell and Zhou Bargaining Sets,"
Econometrica, Econometric Society, vol. 65(5), pages 1227-1240, September.
- Robert M. Anderson and Walter Trockel and Lin Zhou., 1994. "Nonconvergence of the Mas-Colell and Zhou Bargaining Sets," Economics Working Papers 94-224, University of California at Berkeley.
- Robert M. Anderson & Walter Tockel & Lin Zhou, 1994. "Nonconvergence of the Mas-Colell and Zhou Bargaining Sets," Game Theory and Information 9403001, University Library of Munich, Germany.
- Anderson, Robert M. & Trockel, Walter & Zhou, Lin, 1994. "Nonconvergence of the Mas-Colell and Zhou Bargaining Sets," Department of Economics, Working Paper Series qt0fc8c73x, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
- Hyo Seok Jang & Sangjik Lee, 2019. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Papers 1904.07444, arXiv.org, revised Feb 2020.
- Armstrong, Thomas E. & Richter, Marcel K., 1984. "The core-walras equivalence," Journal of Economic Theory, Elsevier, vol. 33(1), pages 116-151, June.
- Grodal, Birgit, 1972. "A Second Remark on the Core of an Atomless Economy," Econometrica, Econometric Society, vol. 40(3), pages 581-583, May.
- Hara, Chiaki, 2002. "The anonymous core of an exchange economy," Journal of Mathematical Economics, Elsevier, vol. 38(1-2), pages 91-116, September.
- Filipe Martins-da-Rocha, V., 2003. "Equilibria in large economies with a separable Banach commodity space and non-ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 39(8), pages 863-889, November.
- Vohra, Rajiv, 1991. "An existence theorem for a bargaining set," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 19-34.
- Vind, Karl, 1972. "A Third Remark on the Core of an Atomless Economy," Econometrica, Econometric Society, vol. 40(3), pages 585-586, May.
- Javier Hervés-Estévez & Emma Moreno-García, 2018. "A limit result on bargaining sets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 327-341, August.
- Martellotti, Anna, 2008. "Finitely additive economies with free extremely desirable commodities," Journal of Mathematical Economics, Elsevier, vol. 44(5-6), pages 535-549, April.
- Mas-Colell, Andreu, 1989. "An equivalence theorem for a bargaining set," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 129-139, April.
- Tourky, Rabee & Yannelis, Nicholas C., 2001. "Markets with Many More Agents than Commodities: Aumann's "Hidden" Assumption," Journal of Economic Theory, Elsevier, vol. 101(1), pages 189-221, November.
- Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
- Lee, Sangjik, 2013. "Competitive Equilibrium With An Atomless Measure Space Of Agents And Infinite Dimensional Commodity Spaces Without Convex And Complete Preferences," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 54(2), pages 221-230, December.
- Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898, Elsevier.
- Noguchi, Mitsunori, 1997. "Economies with a continuum of consumers, a continuum of suppliers and an infinite dimensional commodity space," Journal of Mathematical Economics, Elsevier, vol. 27(1), pages 1-21, February.
- Javier Hervés-Estévez & Emma Moreno-García, 2015. "On restricted bargaining sets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 631-645, August.
- Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
- Michael Greinecker & Konrad Podczeck, 2013. "Liapounoff’s vector measure theorem in Banach spaces and applications to general equilibrium theory," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 157-173, November.
- Sun, Yeneng & Yannelis, Nicholas C., 2008. "Saturation and the integration of Banach valued correspondences," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 861-865, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Niccolò Urbinati, 2023. "The Walrasian objection mechanism and Mas-Colell’s bargaining set in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 45-68, July.
- Jang, Hyo Seok & Lee, Sangjik, 2020. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 57-64.
- Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
- Bhowmik, Anuj & Graziano, Maria Gabriella, 2015.
"On Vind’s theorem for an economy with atoms and infinitely many commodities,"
Journal of Mathematical Economics, Elsevier, vol. 56(C), pages 26-36.
- Anuj Bhowmik & Maria Gabriella Graziano, 2014. "On Vind's Theorem for an Economy with Atoms and Infinitely Many Commodities," CSEF Working Papers 364, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Cea-Echenique, Sebastián & Fuentes, Matías, 2024.
"On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space,"
Mathematical Social Sciences, Elsevier, vol. 129(C), pages 61-69.
- Sebastián Cea-Echenique & Matías Fuentes, 2020. "On the continuity of the walras correspondence for distributional economies with an infinite dimensional commodity space," Working Papers hal-02430960, HAL.
- Motoki Otsuka, 2024. "The existence of Walrasian equilibrium: infinitely many commodities, measure space of agents, and discontinuous preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 12(2), pages 119-140, December.
- Hervés-Estévez, Javier & Moreno-García, Emma, 2015. "A bargaining-Walras approach for finite economies," MPRA Paper 69802, University Library of Munich, Germany.
- M. Ali Khan & Nobusumi Sagara, 2021. "Fuzzy Core Equivalence in Large Economies: A Role for the Infinite-Dimensional Lyapunov Theorem," Papers 2112.15539, arXiv.org.
- He, Wei & Sun, Yeneng, 2022. "Conditional expectation of Banach valued correspondences and economic applications," Journal of Mathematical Economics, Elsevier, vol. 101(C).
- Hervés-Estévez, Javier & Moreno-García, Emma, 2014. "On bargaining sets for finite economies," MPRA Paper 62303, University Library of Munich, Germany, revised 18 Jul 2014.
- Urbinati, Niccolò, 2018. "A convexity result for the range of vector measures with applications to large economies," MPRA Paper 87185, University Library of Munich, Germany.
- Hervés-Beloso, Carlos & Hervés-Estévez, Javier & Moreno-García, Emma, 2018. "Bargaining sets in finite economies," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 93-98.
- Javier Hervés-Estévez & Emma Moreno-García, 2015. "On restricted bargaining sets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 631-645, August.
- Anuj Bhowmik & Jiling Cao, 2013.
"On the core and Walrasian expectations equilibrium in infinite dimensional commodity spaces,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(3), pages 537-560, August.
- Bhowmik, Anuj & Cao, Jiling, 2011. "On the core and Walrasian expectations equilibrium in infinite dimensional commodity spaces," MPRA Paper 35060, University Library of Munich, Germany, revised 28 Nov 2011.
- Basile, Achille & Graziano, Maria Gabriella, 2001. "On the edgeworth's conjecture in finitely additive economies with restricted coalitions," Journal of Mathematical Economics, Elsevier, vol. 36(3), pages 219-240, December.
- Bhowmik, Anuj & Saha, Sandipan, 2023. "Restricted bargaining sets in a club economy," MPRA Paper 119210, University Library of Munich, Germany.
- Bhowmik, Anuj & Cao, Jiling, 2013. "Robust efficiency in mixed economies with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 49-57.
- Evren, Özgür & Hüsseinov, Farhad, 2008. "Theorems on the core of an economy with infinitely many commodities and consumers," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1180-1196, December.
- Hervés-Estévez, Javier & Moreno-García, Emma, 2012. "Some remarks on restricted bargaining sets," MPRA Paper 39385, University Library of Munich, Germany, revised 10 Jun 2012.
- Bernard Cornet & V. Filipe Martins-Da-Rocha, 2021. "Fatou's Lemma for Unbounded Gelfand Integrable Mappings," Post-Print hal-03506933, HAL.
More about this item
Keywords
Walrasian objections; Bargaining set; Infinite dimensional commodity spaces; Saturation property; Lyapunov's Theorem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpdman:177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daria Arkhipova (email available below). General contact details of provider: https://edirc.repec.org/data/mdvenit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.