IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v27y1997i1p1-21.html
   My bibliography  Save this article

Economies with a continuum of consumers, a continuum of suppliers and an infinite dimensional commodity space

Author

Listed:
  • Noguchi, Mitsunori

Abstract

No abstract is available for this item.

Suggested Citation

  • Noguchi, Mitsunori, 1997. "Economies with a continuum of consumers, a continuum of suppliers and an infinite dimensional commodity space," Journal of Mathematical Economics, Elsevier, vol. 27(1), pages 1-21, February.
  • Handle: RePEc:eee:mateco:v:27:y:1997:i:1:p:1-21
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4068(95)00759-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmeidler, David, 1969. "Competitive Equilibria in Markets with a Continuum of Traders and Incomplete Preferences," Econometrica, Econometric Society, vol. 37(4), pages 578-585, October.
    2. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    3. Toussaint, Sabine, 1984. "On the existence of equilibria in economies with infinitely many commodities and without ordered preferences," Journal of Economic Theory, Elsevier, vol. 33(1), pages 98-115, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhe & Song, Qingping, 2022. "A weak α-core existence theorem of generalized games with infinitely many players and pseudo-utilities," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 40-46.
    2. Jiuqiang Liu, 2022. "Equivalence of Competitive Equilibria, Fuzzy Cores, and Fuzzy Bargaining Sets in Finite Production Economies," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    3. Niccolò Urbinati, 2020. "Walrasian objection mechanism and Mas Colell's bargaining set in economies with many commodities," Working Papers 07, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    4. Yang, Zhe & Zhang, Xian, 2021. "A weak α-core existence theorem of games with nonordered preferences and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    5. Niccolò Urbinati, 2023. "The Walrasian objection mechanism and Mas-Colell’s bargaining set in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 45-68, July.
    6. Noguchi, Mitsunori, 2005. "Interdependent preferences with a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 665-686, September.
    7. Suzuki, Takashi, 2013. "Core and competitive equilibria of a coalitional exchange economy with infinite time horizon," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 234-244.
    8. Noguchi, Mitsunori, 2000. "Economies with a measure space of agents and a separable commodity space," Mathematical Social Sciences, Elsevier, vol. 40(2), pages 157-173, September.
    9. Jang, Hyo Seok & Lee, Sangjik, 2020. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 57-64.
    10. Sebastián Cea-Echenique & Matías Fuentes, 2020. "On the continuity of the walras correspondence for distributional economies with an infinite dimensional commodity space," Working Papers hal-02430960, HAL.
    11. Tourky, Rabee & Yannelis, Nicholas C., 2001. "Markets with Many More Agents than Commodities: Aumann's "Hidden" Assumption," Journal of Economic Theory, Elsevier, vol. 101(1), pages 189-221, November.
    12. Bernard Cornet & V. Filipe Martins-Da-Rocha, 2021. "Fatou's Lemma for Unbounded Gelfand Integrable Mappings," Post-Print hal-03506933, HAL.
    13. Cea-Echenique, Sebastián & Fuentes, Matías, 2024. "On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 61-69.
    14. Noguchi, Mitsunori, 1997. "Economies with a continuum of agents with the commodity-price pairing (l[infin], l1)," Journal of Mathematical Economics, Elsevier, vol. 28(3), pages 265-287, October.
    15. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    16. Motoki Otsuka, 2024. "The existence of Walrasian equilibrium: infinitely many commodities, measure space of agents, and discontinuous preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 12(2), pages 119-140, December.
    17. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noguchi, Mitsunori, 1997. "Economies with a continuum of agents with the commodity-price pairing (l[infin], l1)," Journal of Mathematical Economics, Elsevier, vol. 28(3), pages 265-287, October.
    2. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    3. Tian, Guoqiang, 1991. "Implementation of the Walrasian Correspondence without Continuous, Convex, and Ordered Preferences," MPRA Paper 41298, University Library of Munich, Germany.
    4. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    5. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    6. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    7. Bernard Cornet & Mihaela Topuzu, 2005. "Existence of equilibria for economies with externalities and a measure space of consumers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 397-421, August.
    8. Bagh, Adib, 1998. "Equilibrium in abstract economies without the lower semi-continuity of the constraint maps," Journal of Mathematical Economics, Elsevier, vol. 30(2), pages 175-185, September.
    9. Yves Balasko & Mich Tvede, 2010. "General equilibrium without utility functions: how far to go?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 201-225, October.
    10. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    11. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
    12. Yang, Jian, 2018. "Game-theoretic modeling of players’ ambiguities on external factors," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 31-56.
    13. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    14. C. Ionescu Tulcea, 1987. "On the Approximation of Upper Semi-Continuous Correspondences and the Equilibriums of Generalized Games," Discussion Papers 736, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Metin Uyanik & Aniruddha Ghosh & M. Ali Khan, 2023. "Separately Convex and Separately Continuous Preferences: On Results of Schmeidler, Shafer, and Bergstrom-Parks-Rader," Papers 2310.00531, arXiv.org.
    16. Wei He & Nicholas C. Yannelis, 2016. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 497-513, March.
    17. Basci, Erdem & Sertel, Murat R., 1996. "Prakash and Sertel's theory of non-cooperative equilibria in social systems -- twenty years later," Journal of Mathematical Economics, Elsevier, vol. 25(1), pages 1-18.
    18. Jian Yang, 2023. "Nonatomic game with general preferences over returns," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 861-889, September.
    19. B. Grodal & R. Sarin & K. Kikuta & H. Houthakker & C. Seidl, 2001. "Book reviews," Journal of Economics, Springer, vol. 74(1), pages 104-117, February.
    20. Khan, M. Ali & McLean, Richard P. & Uyanik, Metin, 2024. "On constrained generalized games with action sets in non-locally-convex and non-Hausdorff topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 111(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:27:y:1997:i:1:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.