IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v60y2015icp110-114.html
   My bibliography  Save this article

On axiomatizations of the Shapley value for assignment games

Author

Listed:
  • van den Brink, René
  • Pintér, Miklós

Abstract

We consider the problem of axiomatizing the Shapley value on the class of assignment games. It turns out that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games. However, when considering an assignment game as a (communication) graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph where buyers (sellers) are connected with sellers (buyers) only, we show that Myerson’s component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.

Suggested Citation

  • van den Brink, René & Pintér, Miklós, 2015. "On axiomatizations of the Shapley value for assignment games," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 110-114.
  • Handle: RePEc:eee:mateco:v:60:y:2015:i:c:p:110-114
    DOI: 10.1016/j.jmateco.2015.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406815000713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2015.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maike Hoffmann & Peter Sudhölter, 2007. "The Shapley value of exact assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 35(4), pages 557-568, April.
    2. Roth, Alvin, 2012. "The Shapley Value as a von Neumann-Morgenstern Utility," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 6, pages 1-9.
    3. Chun, Youngsub, 1991. "On the Symmetric and Weighted Shapley Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 183-190.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. Sasaki, Hiroo, 1995. "Consistency and Monotonicity in Assignment Problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(4), pages 373-397.
    6. Sergiu Hart, 2006. "Shapley Value," Discussion Paper Series dp421, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    7. Francesc Llerena & Marina Nunez, 2011. "A geometric characterization of the nucleolus of the assignment game," Economics Bulletin, AccessEcon, vol. 31(4), pages 3275-3285.
    8. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    9. Einy, Ezra, 1988. "The shapley value on some lattices of monotonic games," Mathematical Social Sciences, Elsevier, vol. 15(1), pages 1-10, February.
    10. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    11. Toda, Manabu, 2005. "Axiomatization of the core of assignment games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 248-261, November.
    12. Neyman, Abraham, 1989. "Uniqueness of the Shapley value," Games and Economic Behavior, Elsevier, vol. 1(1), pages 116-118, March.
    13. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    14. Thomas Liggett & Steven Lippman & Richard Rumelt, 2009. "The asymptotic shapley value for a simple market game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 333-338, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trudeau, Christian, 2018. "From the bankruptcy problem and its Concede-and-Divide solution to the assignment problem and its Fair Division solution," Games and Economic Behavior, Elsevier, vol. 108(C), pages 225-238.
    2. Csató, László, 2013. "Rangsorolás páros összehasonlításokkal. Kiegészítések a felvételizői preferencia-sorrendek módszertanához [Paired comparisons ranking. A supplement to the methodology of application-based preferenc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1333-1353.
    3. Rene (J.R.) van den Brink & Osman Palanci & S. Zeynep Alparslan Gok, 2017. "Interval Solutions for Tu-games," Tinbergen Institute Discussion Papers 17-094/II, Tinbergen Institute.
    4. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    5. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    6. van den Brink, René & Núñez, Marina & Robles, Francisco, 2021. "Valuation monotonicity, fairness and stability in assignment problems," Journal of Economic Theory, Elsevier, vol. 195(C).
    7. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    8. J. Schouten & B. Dietzenbacher & P. Borm, 2022. "The nucleolus and inheritance of properties in communication situations," Annals of Operations Research, Springer, vol. 318(2), pages 1117-1135, November.
    9. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    10. McQuillin, Ben & Sugden, Robert, 2018. "Balanced externalities and the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 81-92.
    11. Francesc Llerena & Marina Núñez & Carles Rafels, 2015. "An axiomatization of the nucleolus of assignment markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Manuel & E. González-Arangüena & R. Brink, 2013. "Players indifferent to cooperate and characterizations of the Shapley value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 1-14, February.
    2. Francesc Llerena & Marina Núñez & Carles Rafels, 2015. "An axiomatization of the nucleolus of assignment markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 1-15, February.
    3. Francesc Llerena (Universitat Rovira i Virgili - CREIP) & Marina Nunez (Universitat de Barcelona) & Carles Rafels (Universitat de Barcelona), 2012. "An axiomatization of the nucleolus of the assignment game," Working Papers in Economics 286, Universitat de Barcelona. Espai de Recerca en Economia.
    4. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    5. Miklós Pintér & Anna Radványi, 2013. "The Shapley value for shortest path games: a non-graph-based approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 769-781, December.
    6. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    7. Sylvain Béal & Mostapha Diss & Rodrigue Tido Takeng, 2024. "New axiomatizations of the Diversity Owen and Shapley values," Working Papers 2024-09, CRESE.
    8. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    9. van den Brink, René & Núñez, Marina & Robles, Francisco, 2021. "Valuation monotonicity, fairness and stability in assignment problems," Journal of Economic Theory, Elsevier, vol. 195(C).
    10. Manfred Besner, 2019. "Axiomatizations of the proportional Shapley value," Theory and Decision, Springer, vol. 86(2), pages 161-183, March.
    11. Kongo, T. & Funaki, Y. & Tijs, S.H., 2007. "New Axiomatizations and an Implementation of the Shapley Value," Discussion Paper 2007-90, Tilburg University, Center for Economic Research.
    12. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    13. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
    14. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    15. Bourheneddine Ben Dhaou & Abderrahmane Ziad, 2015. "The Free Solidarity Value," Economics Working Paper Archive (University of Rennes & University of Caen) 201508, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    16. Moulin, Herve, 2001. "Normative Microeconomics and the Social Contract," Working Papers 2001-04, Rice University, Department of Economics.
    17. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
    18. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    19. Karpov, Alexander, 2014. "Equal weights coauthorship sharing and the Shapley value are equivalent," Journal of Informetrics, Elsevier, vol. 8(1), pages 71-76.
    20. Conrado M. Manuel & Daniel Martín, 2020. "A Monotonic Weighted Shapley Value," Group Decision and Negotiation, Springer, vol. 29(4), pages 627-654, August.

    More about this item

    Keywords

    Game theory; Assignment game; Shapley value; Graph game; Submarket efficiency; Valuation fairness;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:60:y:2015:i:c:p:110-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.