IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i1p212-216.html
   My bibliography  Save this article

A characterization of the Logarithmic Least Squares Method

Author

Listed:
  • Csató, László

Abstract

We provide an axiomatic characterization of the Logarithmic Least Squares Method (sometimes called row geometric mean), used for deriving a preference vector from a pairwise comparison matrix. This procedure is shown to be the only one satisfying two properties, correctness in the consistent case, which requires the reproduction of the inducing vector for any consistent matrix, and invariance to a specific transformation on a triad, that is, the weight vector is not influenced by an arbitrary multiplication of matrix elements along a 3-cycle by a positive scalar.

Suggested Citation

  • Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:1:p:212-216
    DOI: 10.1016/j.ejor.2018.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718311202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Brink, René & Pintér, Miklós, 2015. "On axiomatizations of the Shapley value for assignment games," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 110-114.
    2. Bouyssou, Denis & Marchant, Thierry, 2014. "An axiomatic approach to bibliometric rankings and indices," Journal of Informetrics, Elsevier, vol. 8(3), pages 449-477.
    3. Fichtner, John, 1986. "On deriving priority vectors from matrices of pairwise comparisons," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 341-345.
    4. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    5. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    6. Čaklović, Lavoslav & Kurdija, Adrian Satja, 2017. "A universal voting system based on the Potential Method," European Journal of Operational Research, Elsevier, vol. 259(2), pages 677-688.
    7. László Csató, 2018. "Characterization of an inconsistency ranking for pairwise comparison matrices," Annals of Operations Research, Springer, vol. 261(1), pages 155-165, February.
    8. Chao, Xiangrui & Kou, Gang & Li, Tie & Peng, Yi, 2018. "Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information," European Journal of Operational Research, Elsevier, vol. 265(1), pages 239-247.
    9. Bouyssou, Denis, 1992. "Ranking methods based on valued preference relations: A characterization of the net flow method," European Journal of Operational Research, Elsevier, vol. 60(1), pages 61-67, July.
    10. Kenneth J. Arrow, 1950. "A Difficulty in the Concept of Social Welfare," Journal of Political Economy, University of Chicago Press, vol. 58(4), pages 328-328.
    11. László Csató, 2013. "Ranking by pairwise comparisons for Swiss-system tournaments," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 783-803, December.
    12. László Csató, 2018. "Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom," Group Decision and Negotiation, Springer, vol. 27(6), pages 1011-1027, December.
    13. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    14. George Rabinowitz, 1976. "Some Comments on Measuring World Influence," Conflict Management and Peace Science, Peace Science Society (International), vol. 2(1), pages 49-55, February.
    15. Woeginger, Gerhard J., 2008. "An axiomatic characterization of the Hirsch-index," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 224-232, September.
    16. D. Bouyssou & P. Perny, 1992. "Ranking methods for valued preference relations," Post-Print hal-02920156, HAL.
    17. Cook, Wade D. & Kress, Moshe, 1988. "Deriving weights from pairwise comparison ratio matrices: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 37(3), pages 355-362, December.
    18. Bouyssou, D. & Perny, P., 1992. "Ranking methods for valued preference relations : A characterization of a method based on leaving and entering flows," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 186-194, August.
    19. Bozóki, Sándor & Csató, László & Temesi, József, 2016. "An application of incomplete pairwise comparison matrices for ranking top tennis players," European Journal of Operational Research, Elsevier, vol. 248(1), pages 211-218.
    20. Theo Dijkstra, 2013. "On the extraction of weights from pairwise comparison matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 103-123, January.
    21. R. Blanquero & E. Carrizosa & E. Conde, 2006. "Inferring Efficient Weights from Pairwise Comparison Matrices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 271-284, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    2. Fernandes, Rosário & Furtado, Susana, 2022. "Efficiency of the principal eigenvector of some triple perturbed consistent matrices," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1007-1015.
    3. Vladimír Bureš & Jiří Cabal & Pavel Čech & Karel Mls & Daniela Ponce, 2020. "The Influence of Criteria Selection Method on Consistency of Pairwise Comparison," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    4. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    5. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    6. Nicola Bellantuono & Pierpaolo Pontrandolfo & Barbara Scozzi, 2021. "Measuring the Openness of Innovation," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. Csató, László, 2024. "Right-left asymmetry of the eigenvector method: A simulation study," European Journal of Operational Research, Elsevier, vol. 313(2), pages 708-717.
    8. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    9. Tekile, Hailemariam Abebe & Brunelli, Matteo & Fedrizzi, Michele, 2023. "A numerical comparative study of completion methods for pairwise comparison matrices," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    2. D'ora Gr'eta Petr'oczy & L'aszl'o Csat'o, 2019. "Revenue allocation in Formula One: a pairwise comparison approach," Papers 1909.12931, arXiv.org, revised Dec 2020.
    3. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    4. László Csató, 2018. "Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom," Group Decision and Negotiation, Springer, vol. 27(6), pages 1011-1027, December.
    5. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    6. Fernandes, Rosário & Furtado, Susana, 2022. "Efficiency of the principal eigenvector of some triple perturbed consistent matrices," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1007-1015.
    7. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    8. Csató, László, 2013. "Rangsorolás páros összehasonlításokkal. Kiegészítések a felvételizői preferencia-sorrendek módszertanához [Paired comparisons ranking. A supplement to the methodology of application-based preferenc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1333-1353.
    9. László Csató, 2018. "Characterization of an inconsistency ranking for pairwise comparison matrices," Annals of Operations Research, Springer, vol. 261(1), pages 155-165, February.
    10. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.
    11. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    12. Brink, René van den & Rusinowska, Agnieszka, 2021. "The degree ratio ranking method for directed graphs," European Journal of Operational Research, Elsevier, vol. 288(2), pages 563-575.
    13. Rene van den Brink & Agnieszka Rusinowska, "undated". "The Degree Ratio Ranking Method for Directed Networks," Tinbergen Institute Discussion Papers 19-026/II, Tinbergen Institute.
    14. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    15. Petróczy, Dóra Gréta, 2021. "An alternative quality of life ranking on the basis of remittances," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    16. Ágoston, Kolos Csaba & Csató, László, 2024. "A lexicographically optimal completion for pairwise comparison matrices with missing entries," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1078-1086.
    17. Michele Fedrizzi & Nino Civolani & Andrew Critch, 2020. "Inconsistency evaluation in pairwise comparison using norm-based distances," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 657-672, December.
    18. van den Brink, René & Gilles, Robert P., 2009. "The outflow ranking method for weighted directed graphs," European Journal of Operational Research, Elsevier, vol. 193(2), pages 484-491, March.
    19. P. Herings & A. Predtetchinski & A. Perea, 2006. "The Weak Sequential Core for Two-Period Economies," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 55-65, April.
    20. P. Jean-Jacques Herings & Gerard van der Laan & Dolf Talman, 2000. "Cooperative Games in Graph Structure," Tinbergen Institute Discussion Papers 00-072/1, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:1:p:212-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.