IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v97y1998i3d10.1023_a1022690009338.html
   My bibliography  Save this article

Differentiability of the Value Function of Nonclassical Optimal Growth Models

Author

Listed:
  • K. Askri

    (University of Paris-1)

  • C. Le Van

    (CNRS, CEPREMAP)

Abstract

We consider an optimal growth (multi-sector) model with nonconvex technology. Using the Clarke results on generalized gradients, we prove that the value function has left and right derivatives with respect to the initial capital stock, without requiring supermodularity assumptions.

Suggested Citation

  • K. Askri & C. Le Van, 1998. "Differentiability of the Value Function of Nonclassical Optimal Growth Models," Journal of Optimization Theory and Applications, Springer, vol. 97(3), pages 591-604, June.
  • Handle: RePEc:spr:joptap:v:97:y:1998:i:3:d:10.1023_a:1022690009338
    DOI: 10.1023/A:1022690009338
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022690009338
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022690009338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-644, August.
    2. Benveniste, L M & Scheinkman, J A, 1979. "On the Differentiability of the Value Function in Dynamic Models of Economics," Econometrica, Econometric Society, vol. 47(3), pages 727-732, May.
    3. W. Davis Dechert & Kazuo Nishimura, 2012. "A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 237-257, Springer.
    4. Amir, Rabah, 1996. "Sensitivity analysis of multisector optimal economic dynamics," Journal of Mathematical Economics, Elsevier, vol. 25(1), pages 123-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rincón-Zapatero, Juan Pablo & Santos, Manuel S., 2009. "Differentiability of the value function without interiority assumptions," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1948-1964, September.
    2. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    3. Erol, Selman & Le Van, Cuong & Saglam, Cagri, 2011. "Existence, optimality and dynamics of equilibria with endogenous time preference," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 170-179, March.
    4. Olivier Morand & Kevin Reffett & Suchismita Tarafdar, 2018. "Generalized Envelope Theorems: Applications to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 650-687, March.
    5. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    6. Juan Pablo Rincón-Zapatero, 2020. "Differentiability of the value function and Euler equation in non-concave discrete-time stochastic dynamic programming," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 79-88, April.
    7. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2004. "Stochastic Growth With Nonconvexities:The Optimal Case," Department of Economics - Working Papers Series 897, The University of Melbourne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cotter, Kevin D. & Park, Jee-Hyeong, 2006. "Non-concave dynamic programming," Economics Letters, Elsevier, vol. 90(1), pages 141-146, January.
    2. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    3. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    4. Amir, Rabah & De Castro, Luciano, 2017. "Nash equilibrium in games with quasi-monotonic best-responses," Journal of Economic Theory, Elsevier, vol. 172(C), pages 220-246.
    5. Juan Pablo Rincón-Zapatero, 2020. "Differentiability of the value function and Euler equation in non-concave discrete-time stochastic dynamic programming," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 79-88, April.
    6. Camacho, Carmen & Saglam, Cagri & Turan, Agah, 2013. "Strategic interaction and dynamics under endogenous time preference," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 291-301.
    7. Manjira Datta & Leonard Mirman & Kevin Reffett, "undated". "Nonclassical Brock-Mirman Economies," Working Papers 2179544, Department of Economics, W. P. Carey School of Business, Arizona State University.
    8. Olivier Bruno & Cuong Van & Benoît Masquin, 2009. "When does a developing country use new technologies?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(2), pages 275-300, August.
    9. repec:hal:pseptp:hal-03261262 is not listed on IDEAS
    10. Tapan Mitra & Kazuo Nishimura, 2012. "Intertemporal Complementarity and Optimality: A Study of a Two-Dimensional Dynamical System," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 195-233, Springer.
    11. repec:dau:papers:123456789/5389 is not listed on IDEAS
    12. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    13. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, John Wiley & Sons, vol. 71(3), pages 636-660, January.
    14. Sağlam Çağri & Turan Agah & Turan Hamide, 2014. "Saddle-node bifurcations in an optimal growth model with preferences for wealth habit," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 145-156, April.
    15. Thanh Tam Nguyen-Huu & Ngoc‐sang Pham, 2023. "FDI spillovers, New Industry Development, and Economic Growth," Post-Print hal-04240260, HAL.
    16. Joshi, Sumit, 1997. "Recursive utility, martingales, and the asymptotic behaviour of optimal processes," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 505-523.
    17. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    18. repec:hal:journl:hal-03261262 is not listed on IDEAS
    19. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    20. Manjira Datta & Leonard Mirman & Olivier Morand & Kevin Reffett, 2002. "Monotone Methods for Markovian Equilibrium in Dynamic Economies," Annals of Operations Research, Springer, vol. 114(1), pages 117-144, August.
    21. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    22. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    23. Manjira Datta & Leonard Mirman & Olivier F. Morand & Kevin Reffett, 2001. "Monotone Methods for Distorted Economies," Working papers 2001-03, University of Connecticut, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:97:y:1998:i:3:d:10.1023_a:1022690009338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.