IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2706-2715.html
   My bibliography  Save this article

Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity

Author

Listed:
  • Wu, Quanjun
  • Zhou, Jin
  • Xiang, Lan
  • Liu, Zengrong

Abstract

The issues of impulsive control and synchronization of chaotic Hindmarsh–Rose model are investigated in this paper. Based on impulsive control theory of dynamical systems, some simple yet less conservative criteria ensuring impulsive stabilization and synchronization of the Hindmarsh–Rose models are derived analytically. Furthermore, two numerical results are presented to demonstrate the effectiveness of the proposed control techniques. It is shown that the obtained results should be helpful to understand dynamical mechanism of signal encoding and transduction from information processing of real neuronal activity.

Suggested Citation

  • Wu, Quanjun & Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2009. "Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2706-2715.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2706-2715
    DOI: 10.1016/j.chaos.2008.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    2. Zhou, Jin & Chen, Tianping & Xiang, Lan, 2006. "Robust synchronization of delayed neural networks based on adaptive control and parameters identification," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 905-913.
    3. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    4. Uçar, Ahmet & Lonngren, Karl E. & Bai, Er-Wei, 2006. "Synchronization of the unified chaotic systems via active control," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1292-1297.
    5. Rabinovich, M.I. & Varona, P. & Torres, J.J. & Huerta, R. & Abarbanel, H.D.I., 1999. "Slow dynamics and regularization phenomena in ensembles of chaotic neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 405-414.
    6. Park, Ju H., 2006. "Synchronization of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1279-1284.
    7. Lei, Youming & Xu, Wei & Shen, Jianwei & Fang, Tong, 2006. "Global synchronization of two parametrically excited systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 428-436.
    8. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xinsong & Huang, Chuangxia & Zhu, Quanxin, 2011. "Synchronization of switched neural networks with mixed delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 817-826.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    2. Ma, Mihua & Zhou, Jin & Cai, Jianping, 2014. "Impulsive practical tracking synchronization of networked uncertain Lagrangian systems without and with time-delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 116-132.
    3. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    4. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    5. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Lei, Youming & Xu, Wei & Shen, Jianwei, 2007. "Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 371-379.
    7. Yu, Tianhu & Cao, Dengqing & Yang, Yang & Liu, Shengqiang & Huang, Wenhu, 2016. "Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 92-101.
    8. Chen, Zhang, 2009. "Complete synchronization for impulsive Cohen–Grossberg neural networks with delay under noise perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1664-1669.
    9. Pal, Pikaso & Mukherjee, V. & Alemayehu, Hinsermu & Jin, Gang Gyoo & Feyisa, Gosa, 2021. "Generalized adaptive backstepping sliding mode control for synchronizing chaotic systems with uncertainties and disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 793-807.
    10. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    11. Su, Lei & Shen, Hao, 2015. "Mixed H∞/passive synchronization for complex dynamical networks with sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 931-942.
    12. Wu, Quanjun & Zhang, Hua & Xiang, Lan & Zhou, Jin, 2012. "A generalized Halanay inequality on impulsive delayed dynamical systems and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 56-62.
    13. Lin, Shih-Lin & Tung, Pi-Cheng, 2009. "A new method for chaos control in communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3234-3241.
    14. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    15. Zhao, Yang, 2009. "Synchronization of two coupled systems of J-J type using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3035-3041.
    16. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    17. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    18. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    19. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    20. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2706-2715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.