IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p425-d503255.html
   My bibliography  Save this article

An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs

Author

Listed:
  • Ahmad Sami Bataineh

    (Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Al Salt 19117, Jordan
    Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
    These authors contributed equally to this work.)

  • Osman Rasit Isik

    (Elementary Mathematics Education Program, Faculty of Education, Mugla Sitki Kocman University, Mugla 48000, Turkey
    These authors contributed equally to this work.)

  • Moa’ath Oqielat

    (Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Al Salt 19117, Jordan
    These authors contributed equally to this work.)

  • Ishak Hashim

    (Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
    These authors contributed equally to this work.)

Abstract

In this paper, we introduce two new methods to solve systems of ordinary differential equations. The first method is constituted of the generalized Bernstein functions, which are obtained by Bernstein polynomials, and operational matrix of differentiation with collocation method. The second method depends on tau method, the generalized Bernstein functions and operational matrix of differentiation. These methods produce a series which is obtained by non-polynomial functions set. We give the standard Bernstein polynomials to explain the generalizations for both methods. By applying the residual correction procedure to the methods, one can estimate the absolute errors for both methods and may obtain more accurate results. We apply the methods to some test examples including linear system, non-homogeneous linear system, nonlinear stiff systems, non-homogeneous nonlinear system and chaotic Genesio system. The numerical shows that the methods are efficient and work well. Increasing m yields a decrease on the errors for all methods. One can estimate the errors by using the residual correction procedure.

Suggested Citation

  • Ahmad Sami Bataineh & Osman Rasit Isik & Moa’ath Oqielat & Ishak Hashim, 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:425-:d:503255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumitru Baleanu & Mohsen Alipour & Hossein Jafari, 2013. "The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, June.
    2. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    3. Park, Ju H., 2005. "GCS of a class of chaotic dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1429-1435.
    4. Asgari, M. & Ezzati, R., 2017. "Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 290-298.
    5. Osman Rasit Isik & Mehmet Sezer, 2013. "Bernstein Series Solution of a Class of Lane-Emden Type Equations," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadek, Lakhlifa & Bataineh, Ahmad Sami & Isik, Osman Rasit & Alaoui, Hamad Talibi & Hashim, Ishak, 2023. "A numerical approach based on Bernstein collocation method: Application to differential Lyapunov and Sylvester matrix equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 475-488.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    2. Park, Ju H., 2007. "Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1552-1559.
    3. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    4. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    5. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    6. Chen, Mou & Chen, Wen-hua, 2009. "Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2716-2724.
    7. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    8. Maleknejad, Khosrow & Rashidinia, Jalil & Eftekhari, Tahereh, 2018. "Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 272-285.
    9. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "GCS of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1238-1245.
    10. Wu, Quanjun & Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2009. "Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2706-2715.
    11. Park, Ju H., 2006. "Synchronization of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1279-1284.
    12. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    13. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    14. Pan, Yubin & Huang, Jin & Ma, Yanying, 2019. "Bernstein series solutions of multidimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 149-161.
    15. Dadras, Sara & Momeni, Hamid Reza, 2010. "Adaptive sliding mode control of chaotic dynamical systems with application to synchronization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2245-2257.
    16. Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
    17. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    18. Behzad, Mehdi & Salarieh, Hassan & Alasty, Aria, 2008. "Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1295-1304.
    19. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    20. Chen, Juhn-Horng, 2008. "Controlling chaos and chaotification in the Chen–Lee system by multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 843-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:425-:d:503255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.