IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v80y2009i4p693-706.html
   My bibliography  Save this article

Thresholds for soliton creation in the Ablowitz–Ladik lattice

Author

Listed:
  • Adrián Espínola-Rocha, J.
  • Kevrekidis, P.G.

Abstract

Square barrier initial potentials for the Ablowitz–Ladik (AL) lattice are considered, both in the single component as well as in the vector (Manakov) case. We determine the threshold condition for creating solitons with such initial conditions in these integrable, discrete versions of the nonlinear Schrödinger equation for the case of one-, two-, three- and four-site barriers. We find that for square barriers in the scalar case, it is impossible to generate a soliton with a single-site excitation, while only one soliton can be produced from a two-site and three-site square barrier. Finally, in the four-site case, there appear to be two thresholds, one leading to a soliton and a second one to a breathing soliton. We illustrate the differences of the vector case from the scalar one for initial conditions with disjoint support between the components, and also discuss the case of non-square barriers. The analytical findings are corroborated by numerical simulations in all the presented cases.

Suggested Citation

  • Adrián Espínola-Rocha, J. & Kevrekidis, P.G., 2009. "Thresholds for soliton creation in the Ablowitz–Ladik lattice," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 693-706.
  • Handle: RePEc:eee:matcom:v:80:y:2009:i:4:p:693-706
    DOI: 10.1016/j.matcom.2009.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475409002729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jason W. Fleischer & Mordechai Segev & Nikolaos K. Efremidis & Demetrios N. Christodoulides, 2003. "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature, Nature, vol. 422(6928), pages 147-150, March.
    2. Demetrios N. Christodoulides & Falk Lederer & Yaron Silberberg, 2003. "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature, Nature, vol. 424(6950), pages 817-823, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kartashov, Yaroslav V., 2023. "Vortex solitons in large-scale waveguide arrays with adjustable discrete rotational symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Li, S.R. & Bao, Y.Y. & Liu, Y.H. & Xu, T.F., 2022. "Bright solitons in fractional coupler with spatially periodical modulated nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Chen, Guanwei & Ma, Shiwang, 2014. "Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 787-798.
    4. Bao, Y.Y. & Li, S.R. & Liu, Y.H. & Xu, T.F., 2022. "Gap solitons and nonlinear Bloch waves in fractional quantum coupler with periodic potential," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Göksel, İzzet & Antar, Nalan & Bakırtaş, İlkay, 2018. "Two-dimensional solitons in cubic-saturable media with PT-symmetric lattices," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 83-89.
    7. Chengzhi Qin & Han Ye & Shulin Wang & Lange Zhao & Menglin Liu & Yinglan Li & Xinyuan Hu & Chenyu Liu & Bing Wang & Stefano Longhi & Peixiang Lu, 2024. "Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Feng, Bao-Feng & Chan, Youn-Sha, 2007. "Intrinsic localized modes in a three particle Fermi–Pasta–Ulam lattice with on-site harmonic potential," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 292-301.
    9. Shi, Zeyun & Badshah, Fazal & Qin, Lu, 2023. "Two-dimensional lattice soliton and pattern formation in a cold Rydberg atomic gas with nonlocal self-defocusing Kerr nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Cabanas, A.M. & Vélez, J.A. & Pérez, L.M. & Díaz, P. & Clerc, M.G. & Laroze, D. & Malomed, B.A., 2021. "Dissipative structures in a parametrically driven dissipative lattice: Chimera, localized disorder, continuous-wave, and staggered states," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Peng, Jianle & He, Yingji, 2018. "Generation of multivortex ring beams by inhomogeneous effective diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 30-36.
    17. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Panajotov, Krassimir & Tlidi, Mustapha & Song, Yufeng & Zhang, Han, 2022. "Discrete vector light bullets in coupled χ3 nonlinear cavities," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Abbagari, Souleymanou & Houwe, Alphonse & Akinyemi, Lanre & Saliou, Youssoufa & Bouetou, Thomas Bouetou, 2022. "Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:80:y:2009:i:4:p:693-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.