IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921002332.html
   My bibliography  Save this article

Dissipative structures in a parametrically driven dissipative lattice: Chimera, localized disorder, continuous-wave, and staggered states

Author

Listed:
  • Cabanas, A.M.
  • Vélez, J.A.
  • Pérez, L.M.
  • Díaz, P.
  • Clerc, M.G.
  • Laroze, D.
  • Malomed, B.A.

Abstract

Discrete dissipative coupled systems exhibit complex behavior such as chaos, spatiotemporal intermittence, chimeras among others. We construct and investigate chimera states, in the form of confined stationary and dynamical states in a chain of parametrically driven sites with onsite damping and cubic nonlinearity. The system is modeled by the respective discrete parametrically driven damped nonlinear Schrödinger equation. Chimeras feature quasi-periodic or chaotic dynamics in the filled area, quantified by time dependence of the total norm (along with its power spectrum), and by the largest Lyapunov exponent. Systematic numerical simulations, in combination with some analytical results, reveal regions in the parameter space populated by stable localized states of different types. A phase transition from the stationary disordered states to spatially confined dynamical chaotic one is identified. Essential parameters of the system are the strength and detuning of the forcing, as well as the lattice’s coupling constant.

Suggested Citation

  • Cabanas, A.M. & Vélez, J.A. & Pérez, L.M. & Díaz, P. & Clerc, M.G. & Laroze, D. & Malomed, B.A., 2021. "Dissipative structures in a parametrically driven dissipative lattice: Chimera, localized disorder, continuous-wave, and staggered states," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002332
    DOI: 10.1016/j.chaos.2021.110880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, M.S. & Szezech, J.D. & Borges, F.S. & Iarosz, K.C. & Caldas, I.L. & Batista, A.M. & Viana, R.L. & Kurths, J., 2017. "Chimera-like states in a neuronal network model of the cat brain," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 86-91.
    2. Berec, Vesna, 2016. "Chimera state and route to explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 75-81.
    3. Jason W. Fleischer & Mordechai Segev & Nikolaos K. Efremidis & Demetrios N. Christodoulides, 2003. "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature, Nature, vol. 422(6928), pages 147-150, March.
    4. Guo, Shuangjian & Dai, Qionglin & Cheng, Hongyan & Li, Haihong & Xie, Fagen & Yang, Junzhong, 2018. "Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 394-399.
    5. Trombettoni, A. & Nistazakis, H.E. & Rapti, Z. & Frantzeskakis, D.J. & Kevrekidis, P.G., 2009. "Soliton dynamics in linearly coupled discrete nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 814-824.
    6. Faghani, Zahra & Arab, Zahra & Parastesh, Fatemeh & Jafari, Sajad & Perc, Matjaž & Slavinec, Mitja, 2018. "Effects of different initial conditions on the emergence of chimera states," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 306-311.
    7. Clerc, Marcel G. & Falcon, Claudio, 2005. "Localized patterns and hole solutions in one-dimensional extended systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 48-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Cabanas, Ana M. & Rivas, Ronald & Pérez, Laura M. & Vélez, Javier A. & Díaz, Pablo & Clerc, Marcel G. & Pleiner, Harald & Laroze, David & Malomed, Boris A., 2021. "A quasi-periodic route to chaos in a parametrically driven nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazarides, N. & Hizanidis, J. & Tsironis, G.P., 2020. "Controlled generation of chimera states in SQUID metasurfaces using DC flux gradients," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Lepri, Stefano & Pikovsky, Arkady, 2022. "Phase-locking dynamics of heterogeneous oscillator arrays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Marghoti, Gabriel & de Lima Prado, Thiago & Conte, Arturo Cagnato & Ferrari, Fabiano Alan Serafim & Lopes, Sergio Roberto, 2022. "Intermittent chimera-like and bi-stable synchronization states in network of distinct Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Bao, Y.Y. & Li, S.R. & Liu, Y.H. & Xu, T.F., 2022. "Gap solitons and nonlinear Bloch waves in fractional quantum coupler with periodic potential," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Panajotov, Krassimir & Tlidi, Mustapha & Song, Yufeng & Zhang, Han, 2022. "Discrete vector light bullets in coupled χ3 nonlinear cavities," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2023. "A family of nonlinear Schrodinger equations and their solitons solutions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Iubini, Stefano & Politi, Antonio, 2021. "Chaos and localization in the discrete nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Kartashov, Yaroslav V., 2023. "Vortex solitons in large-scale waveguide arrays with adjustable discrete rotational symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Li, S.R. & Bao, Y.Y. & Liu, Y.H. & Xu, T.F., 2022. "Bright solitons in fractional coupler with spatially periodical modulated nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Feng, Bao-Feng & Chan, Youn-Sha, 2007. "Intrinsic localized modes in a three particle Fermi–Pasta–Ulam lattice with on-site harmonic potential," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 292-301.
    16. Shi, Zeyun & Badshah, Fazal & Qin, Lu, 2023. "Two-dimensional lattice soliton and pattern formation in a cold Rydberg atomic gas with nonlocal self-defocusing Kerr nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Cisternas, Jaime & Escaff, Daniel & Clerc, Marcel G. & Lefever, René & Tlidi, Mustapha, 2020. "Gapped vegetation patterns: Crown/root allometry and snaking bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    18. Chen, Guanwei & Ma, Shiwang, 2014. "Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 787-798.
    19. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. A.V., Bukh & V.S., Anishchenko, 2020. "Spiral and target wave chimeras in a 2D network of nonlocally coupled van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.