IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v46y1998i5p485-505.html
   My bibliography  Save this article

Good random number generators are (not so) easy to find

Author

Listed:
  • Hellekalek, P.

Abstract

Every random number generator has its advantages and deficiencies. There are no “safe” generators. The practitioner's problem is how to decide which random number generator will suit his needs best. In this paper, we will discuss criteria for good random number generators: theoretical support, empirical evidence and practical aspects. We will study several recent algorithms that perform better than most generators in actual use. We will compare the different methods and supply numerical results as well as selected pointers and links to important literature and other sources. Additional information on random number generation, including the code of most algorithms discussed in this paper is available from our web-server under the address http://random.mat.sbg.ac.at/

Suggested Citation

  • Hellekalek, P., 1998. "Good random number generators are (not so) easy to find," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 46(5), pages 485-505.
  • Handle: RePEc:eee:matcom:v:46:y:1998:i:5:p:485-505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475498000780
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winker, Peter & Fang, Kai-Tai, 1995. "Application of threshold accepting to the evaluation of the discrepancy of a set of points," Discussion Papers, Series II 248, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    2. L'Ecuyer, Pierre & Andres, Terry H., 1997. "A random number generator based on the combination of four LCGs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(1), pages 99-107.
    3. Pierre L'Ecuyer, 1996. "Combined Multiple Recursive Random Number Generators," Operations Research, INFORMS, vol. 44(5), pages 816-822, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hawkins, Dollena S. & Allen, David M. & Stromberg, Arnold J., 2001. "Determining the number of components in mixtures of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 15-48, November.
    2. Aljahdali Asia & Mascagni Michael, 2017. "Feistel-inspired scrambling improves the quality of linear congruential generators," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 89-99, June.
    3. Ovidiu Bagdasar & Minsi Chen & Vasile Drăgan & Ivan Ganchev Ivanov & Ioan-Lucian Popa, 2023. "On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators," Mathematics, MDPI, vol. 11(5), pages 1-16, March.
    4. Malinovskii, Vsevolod K. & Kosova, Ksenia O., 2014. "Simulation analysis of ruin capital in Sparre Andersen’s model of risk," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 184-193.
    5. L’Ecuyer, Pierre & Munger, David & Oreshkin, Boris & Simard, Richard, 2017. "Random numbers for parallel computers: Requirements and methods, with emphasis on GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 135(C), pages 3-17.
    6. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    7. Tan, Syn Kiat & Guan, Sheng-Uei, 2009. "Randomness quality of permuted pseudorandom binary sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1618-1626.
    8. Kleiber Christian & Zeileis Achim, 2013. "Reproducible Econometric Simulations," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 89-99, July.
    9. Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
    10. Marchi, A. & Liverani, A. & Del Giudice, A., 2009. "Polynomial pseudo-random number generator via cyclic phase," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3328-3338.
    11. Ali Shakir Mahmood & Mohd Shafry Mohd Rahim & Nur Zuraifah Syazrah Othman, 2016. "Implementation of the Binary Random Number Generator Using the Knight Tour Problem," Modern Applied Science, Canadian Center of Science and Education, vol. 10(4), pages 1-35, April.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    13. Mascagni Michael & Hin Lin-Yee, 2012. "Parallel random number generators in Monte Carlo derivative pricing: An application-based test," Monte Carlo Methods and Applications, De Gruyter, vol. 18(2), pages 161-179, January.
    14. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    15. Tang, Hui-Chin, 2002. "Modified decomposition method for multiple recursive random number generator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(5), pages 453-458.
    16. Wegenkittl, Stefan, 2001. "Gambling tests for pseudorandom number generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 281-288.
    17. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    2. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    3. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    4. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    5. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    6. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    7. Lin, D.K.J. & Sharpe, C. & Winker, P., 2010. "Optimized U-type designs on flexible regions," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1505-1515, June.
    8. Chipman, J. & Winker, P., 2005. "Optimal aggregation of linear time series models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 311-331, April.
    9. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    10. Lyra, M. & Paha, J. & Paterlini, S. & Winker, P., 2010. "Optimization heuristics for determining internal rating grading scales," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2693-2706, November.
    11. Björn Fastrich & Peter Winker, 2012. "Robust portfolio optimization with a hybrid heuristic algorithm," Computational Management Science, Springer, vol. 9(1), pages 63-88, February.
    12. Marianna Lyra & Akwum Onwunta & Peter Winker, 2015. "Threshold accepting for credit risk assessment and validation," Journal of Banking Regulation, Palgrave Macmillan, vol. 16(2), pages 130-145, April.
    13. Frauke Schleer, 2015. "Finding Starting-Values for the Estimation of Vector STAR Models," Econometrics, MDPI, vol. 3(1), pages 1-26, January.
    14. Dwyer, Gerald Jr. & Williams, K. B., 2003. "Portable random number generators," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 645-650, February.
    15. Schleer, Frauke, 2013. "Finding starting-values for maximum likelihood estimation of vector STAR models," ZEW Discussion Papers 13-076, ZEW - Leibniz Centre for European Economic Research.
    16. Yong-Dao Zhou & Kai-Tai Fang, 2013. "An efficient method for constructing uniform designs with large size," Computational Statistics, Springer, vol. 28(3), pages 1319-1331, June.
    17. Darbellay, Georges A., 1999. "An estimator of the mutual information based on a criterion for conditional independence," Computational Statistics & Data Analysis, Elsevier, vol. 32(1), pages 1-17, November.
    18. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    19. Wichmann, B.A. & Hill, I.D., 2006. "Generating good pseudo-random numbers," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1614-1622, December.
    20. L'Ecuyer, Pierre, 2004. "Random number generation," Papers 2004,21, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:46:y:1998:i:5:p:485-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.