IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v18y2012i2p161-179n4.html
   My bibliography  Save this article

Parallel random number generators in Monte Carlo derivative pricing: An application-based test

Author

Listed:
  • Mascagni Michael

    (Departments of Computer Science, Mathematics & Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Hin Lin-Yee

    (Emphron Informatics, Level 3, 88 Jephson St., Toowong, Queensland 4066, Australia)

Abstract

Parallel pseudorandom number generators (PPRNG) that satisfy classical statistical tests may still demonstrate intra-stream and inter-stream correlations in real life applications. In order to investigate the suitability of a PPRNG for use in Monte Carlo pricing of financial derivatives, an application-based test is proposed to evaluate the bias and the standard error of the mean (SE) associated with the PPRNG as a gauge of intra-stream and inter-stream correlations respectively. This test involves estimating the price of a vanilla European call option via Monte Carlo simulation, where the asset price at maturity is estimated by propagating the Black–Scholes stochastic differential equation via the Euler–Maruyama discretization scheme. The mean and SE profiles of the numerical results based on three PPRNG libraries (RngStream, TRNG and SPRNG) that implement parallel random numbers via sequence splitting strategies (RngStream and TRNG) and parameterization strategy (SPRNG) are compared. In terms of the bias and SE profiles, the best performing PPRNG constructed using the sequence splitting strategy is comparable to that constructed using parameterization, both use multiple recursive generators in their kernel.

Suggested Citation

  • Mascagni Michael & Hin Lin-Yee, 2012. "Parallel random number generators in Monte Carlo derivative pricing: An application-based test," Monte Carlo Methods and Applications, De Gruyter, vol. 18(2), pages 161-179, January.
  • Handle: RePEc:bpj:mcmeap:v:18:y:2012:i:2:p:161-179:n:4
    DOI: 10.1515/mcma-2012-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2012-0005
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2012-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Corwin Joy & Phelim P. Boyle & Ken Seng Tan, 1996. "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, INFORMS, vol. 42(6), pages 926-938, June.
    4. Hellekalek, P., 1998. "Good random number generators are (not so) easy to find," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 46(5), pages 485-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeriy Ryabchenko & Sergey Sarykalin & Stan Uryasev, 2004. "Pricing European Options by Numerical Replication: Quadratic Programming with Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 301-333, September.
    2. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    3. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    4. Aprahamian, Hrayer & Maddah, Bacel, 2015. "Pricing Asian options via compound gamma and orthogonal polynomials," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 21-43.
    5. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    6. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    7. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    8. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    9. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    10. David Heath & Eckhard Platen, 2002. "A variance reduction technique based on integral representations," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    13. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    14. Suleyman Basak & Anna Pavlova & Alexander Shapiro, 2007. "Optimal Asset Allocation and Risk Shifting in Money Management," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1583-1621, 2007 21.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. G. D’Amico & R. Blasis & V. Vigna, 2024. "Advertising investments on television: real option estimation through Markov chains," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4661-4678, October.
    17. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    18. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    19. Raimova, Gulnora, 2011. "Variance reduction methods at the pricing of weather options," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 21(1), pages 3-15.
    20. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:18:y:2012:i:2:p:161-179:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.