IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v23y2017i2p89-99n3.html
   My bibliography  Save this article

Feistel-inspired scrambling improves the quality of linear congruential generators

Author

Listed:
  • Aljahdali Asia

    (Department of Computer Science, Florida State University, Tallahassee,FL 32306–4530, USA; and Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 80221, Jeddah 21589, Saudi Arabia)

  • Mascagni Michael

    (Departments of Computer Science, Mathematics, Computational Science, and Institute for MolecularBiophysics, Florida State University, Tallahassee, FL 32306–4530, USA)

Abstract

Generating pseudorandom numbers is a prerequisite for many areas including Monte Carlo simulation and randomized algorithms. The performance of pseudorandom number generators (PRNGs) depends on the quality of the generated random sequences. They must be generated quickly and have good statistical properties. Several statistical test suites have been developed to evaluate a single stream of random numbers such as those from the TestU01 library, the DIEHARD test suite, the tests from the SPRNG package, and a set of tests designed to evaluate bit sequences developed at NIST. This paper presents a new pseudorandom number generation scheme that produces pseudorandom sequences with good statistical properties via a scrambling procedure motivated by cryptographic transformations. We will specifically apply this to a popular set of PRNGs called the Linear Congruential generators (LGCs). The scrambling technique is based on a simplified version of a Feistel network. The proposed method seeks to improve the quality of the LCGs output stream. We show that this Feistel-inspired scrambling technique breaks up the regularities that are known to exist in LCGs. The Feistel-inspired scrambling technique is modular, and can be applied to any 64-bit PRNG, and so we believe that it can serve as an inexpensive model for a scrambler that can be used with most PRNGs via post-processing.

Suggested Citation

  • Aljahdali Asia & Mascagni Michael, 2017. "Feistel-inspired scrambling improves the quality of linear congruential generators," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 89-99, June.
  • Handle: RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:89-99:n:3
    DOI: 10.1515/mcma-2017-0105
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2017-0105
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2017-0105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hellekalek, P., 1998. "Good random number generators are (not so) easy to find," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 46(5), pages 485-505.
    2. L’Ecuyer, Pierre & Simard, Richard, 2001. "On the performance of birthday spacings tests with certain families of random number generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 131-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malinovskii, Vsevolod K. & Kosova, Ksenia O., 2014. "Simulation analysis of ruin capital in Sparre Andersen’s model of risk," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 184-193.
    2. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    3. Pierre L'Ecuyer & Richard Simard, 2014. "On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 449-460, August.
    4. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    5. Ovidiu Bagdasar & Minsi Chen & Vasile Drăgan & Ivan Ganchev Ivanov & Ioan-Lucian Popa, 2023. "On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators," Mathematics, MDPI, vol. 11(5), pages 1-16, March.
    6. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    7. Kleiber Christian & Zeileis Achim, 2013. "Reproducible Econometric Simulations," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 89-99, July.
    8. Marchi, A. & Liverani, A. & Del Giudice, A., 2009. "Polynomial pseudo-random number generator via cyclic phase," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3328-3338.
    9. Ali Shakir Mahmood & Mohd Shafry Mohd Rahim & Nur Zuraifah Syazrah Othman, 2016. "Implementation of the Binary Random Number Generator Using the Knight Tour Problem," Modern Applied Science, Canadian Center of Science and Education, vol. 10(4), pages 1-35, April.
    10. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    11. L’Ecuyer, Pierre & Granger-Piché, Jacinthe, 2003. "Combined generators with components from different families," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 395-404.
    12. L'Ecuyer, Pierre, 2004. "Random number generation," Papers 2004,21, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    13. Tan, Syn Kiat & Guan, Sheng-Uei, 2009. "Randomness quality of permuted pseudorandom binary sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1618-1626.
    14. Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
    15. Tang, Hui-Chin, 2002. "Modified decomposition method for multiple recursive random number generator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(5), pages 453-458.
    16. Wegenkittl, Stefan, 2001. "Gambling tests for pseudorandom number generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 281-288.
    17. Harase, Shin, 2019. "Conversion of Mersenne Twister to double-precision floating-point numbers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 76-83.
    18. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    19. Pierre L’Ecuyer & Paul Wambergue & Erwan Bourceret, 2020. "Spectral Analysis of the MIXMAX Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 135-144, January.
    20. Mascagni Michael & Hin Lin-Yee, 2012. "Parallel random number generators in Monte Carlo derivative pricing: An application-based test," Monte Carlo Methods and Applications, De Gruyter, vol. 18(2), pages 161-179, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:89-99:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.